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Content of this part

Angular momentum: operators, eigenvalues, eigenfunctions; magnetic moments; spin
moments; application to the hydrogen atom.

Electronic structure of atoms: orbitals, orbital energies, electronic configuration;
angular momentum operators for many electron system; representation of atomic states

and the corresponding notation; Hund's rule, spin-orbit interaction, atoms in magnetic
field.

Molecular symmetry, group theory: symmetry operations, point groups, represen-
tations and the character table, direct-product representation; application in electronic
structure and spectroscopy.

Chemical bond: quantum mechanical definition of chemical bond; approximations:
IPA, MO theories, LCAO-MO, Valence Bond theory; diatomic molecules, electronic
structure of transition-metal complexes; quantum chemistry of periodic systems.

Computational Chemistry: determinant wave function, energy expression with de-
terminant wave function, short derivation of the Hartree-Fock (HF) method, Hartree-
Fock-Roothaan method, interpretation of the HF results (orbitals, density, population
analysis, Koopmans theorem), basic elements of the Density Functional Theory (DFT),
Hohenberg-Kohn theorems, Kohn-Sham DFT, functionals, hybrid methods; atomic
basis sets.




Reminder

In quantum mechanics physical quantities are represented by operators.

Basic operators are the coordinate £ and momentum p:

>
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All other operators can be derived by replacing coordinate and momen-
tum in the classical formula by the operators.

Example: kinetic energy, Hamiltonian




Reminder

Measurement

According to quantum mechanics, the result of a measurement can only
be the eigenvalue of the corresponding operator.

Aﬁbi(iﬂ) = a;Q;

where a; is the ith eigenvalue, ¢; is corresponding eigenfunction.




Reminder

Two operators commute, if

i.e. their commutator is vanishing. In this case the corresponding two
physical quantities can be measured simultaneously.

Otherwise, the two physical quantities can be measured only with some
uncertainty:

[52',]5@] = h#0
!
1

This is the famous Heisenberg uncertainty principle.
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Angular momentum operators

Classical angular momentum:

[ = rxp

le = YDz — 2Py
ly = 2Pz — I
l. = Zpy— Ypz-

ELTE Eotvos Lordnd University, Institute of Chemistry 7



Angular momentum operators

Classical angular momentum:

[ = rxp

le = Yp: — 2Dy
ly = 2Pz — D
l: = xpy — YDa

Thus, with the definition of #, 2, and p one can obtain the corresponding
operators for the angular momentum:

> C . 0 d
ly = ypz_zpy:_Zh ya—za—y
P
~ 0 0
. = —ih(2—y—

Z (xay 0w>
~2

= 2+D+12




Angular momentum operators

It is easy to derive some important properties of the angular momentum
operators:

A ~ ] )
le,l,| = 1ihl,
Z Z 3 h Z 4 Eigenvalue 3
R of /,
Yy lz Wby ' ]
[ A ~ N ]
l l . h l Square-root
—_ of the eigenvalue t
zy by - Z ’y of 2 ¢
/\2 N Fig. 4.2 The cone used to ;
. represent a state of Jﬂgl]lﬂl' t
l , l'l/ — O’ ’I/ _— :,C’ y7 Z momentum with specified €
magnimdc and Z-component.

A

This means that [ does not have any two components which can be
measured at the same time. It is [? (square length) and one component of

[ which can be obtained simultaneously.




Angular momentum operators

z component of the angular momentum:
. , 0 0
l,=—th|x— — y—
Oy Ox

Let us use a spherical coordinate system!

xr = rsinvcosyp
y = rsindsine
z = rcos? I':G
Ox , _
— = —rsindsinp = —y
Oy
Oy .
—— = rsindcosp ==
Oy
0z
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Angular momentum operators

— = —rsinvsiny = —y

—— = rsindcosp =<

First we recognize that

( 0 8) 0
rT— —Yy— | = —
oy Ox Oy

One can easily prove this using the , chain-rule”:

o 00z n 0 0y n 0 0z
dp  Oxdyp Oydyp 9z0¢
0 0 0 0 0

= ——y+t—xz+_—-0= (zc——y—> QED

Ox oy 0 oy Ox
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Angular momentum operators

The z component of the angular momentum operator therefore reads:

I, = —ihi
Dy

Eigenfunctions and eigenvalues of the z component of the angular
momentum:

[, =mh, m =0, +£1, ...
1
@ (¢) z\/—%-e@m% m =0, =1, ...

@D,
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Angular momentum operators

12 in spherical coordinates:
1 0 0 1 o
P o= —r|—= <sim9—> +—
sin ¥ 99 09/  sin® ¥ Op?
A (9)
The eigensystem of the [? operator
A = IL(I4+1DR> 1>]|m]
Y (9,0) = O (cos(9)) - e
[ = 0,1,2
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Magnetic moment

If a charged particle is moving on a circle (has angular momentum), it
also has magnetic moment. The magnetic moment vector (u) is therefore
proportional to the angular momentum vector, for example the z component
IS:

(& A

z lz
H 2 Mej

The system having a magnetic moment will interact with the magnetic
field, its energy will change due to this interaction:

€

AE = B, -1

2 Mel

where B, is the z component of the magnetic induction, which is quantity
characterizing the strength of the magnetic field.
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Magnetic moment

The possible values of [, = m - h, where m = 0, &1, ... Therefore
AFE = B, -up-m
where up = szf is a constant called Bohr-magneton.

el

What does this mean? According to the equations above, the energy of the particle
with angular momentum in magnetic field depends on the quantum number m: if m is
positive, it will grow; if m is negative, it will decrease; and it is not changing for m = 0.
Since there are 2] + 1 possible values of m, there will be 21 + 1 different energy levels,
the degeneracy of these levels will be lifted! This is the so called Zeeman-effect.
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The spin of the electron

Stern-Gerlach experiment:

Classical
prédiclion What was _
actually observed Slvar o
b % Furnace
-l-l.'-
Inhomogenaous
magnetc field

The beam splited in to 2 beams, and not 1, 3, 5, 7, etc., as expected
form the properties of the angular momentum!!

ELTE Eotvos Lordnd University, Institute of Chemistry 16



The spin of the electron

To explain this experiment

e Pauli (1925): a , fourth quantum number” is needed;

e Goudsmit and Uhlenbeck suggested the concept of spin, as the ,, internal
angular momentum”

In mathematical form:

ﬁ — (Sxa §y7 §z)
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The spin of the electrons

The commutation properties of this new operator are the same as of the
angular momentum, since it describes similar property:

85,8, = ihs.

5%,8] = 0O I =T,Y, 2

Eigenvalues have again similar properties than in case of the angular
momentum:

5% eigenvalues : s(s+1) [R?]

S, eigenvalues : ms=—s,—s+1,...,s |h]

18



The spin of the electrons

What are the possible values of the new quantum numbers s and m?
This can be obtained from the Stern-Gerlach experiment: there were two
beams, so that m4 can have only two values:

ms = y T A

Therefore

is the only proper choice!!!

Electron has a charge of —1, and a spin of%!!!!

19



The spin of the electron

There are two eigenvalues of s, therefore there are two eigenfunctions (o)
and B(o) (o is the spin coordinate):

1
s, alc) = 5 a(o)
) 1
Sz 6(0-) — _5 6(0-)
Pauli matrices:
) 10
= (6
, 0 l)
S, = 2
(]
0 .

>
8
I
7 N\
N .
=
N
N
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The spin of the electron

The total wave function of the electron must be supplemented by the
spin, thus it depends on four variables:

u(z,y,z)a(o)
or = u(x,y,z2)5(0)

U(z,y,z2,0)

@D,
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Spin-orbit interaction

There are two different types of angular momenta:

e angular momentum resulting from the motion of electrons (1),
(orbital angular momentum);

e angular momentum originating from the spin (8) (spin momentum).
These magnetic moments can interact, causing an energy change:
H — H+(¢-1-3
where ( is a constant.
Consequences:
e the Hamilton operator will not commute with lAQ, l; and s, operators;

e energy will depend on the quantum number [.

22



Quantum mechanical description of the hydrogen atom

The Hamiltonian of the hydrogen atom (in atomic units):

A 1 1
H = —A——-
2 r

The Hamiltonian in spherical coordinates:

ol [52 +2Q+i(_[z)] 1

2002 " ror  r2
Relation of the Hamiltonian with angular momentum:

{}AI,ZAZ} =0 and [ﬁ[,lﬂ =0

Since [, and [2 depend only on the variables ¢ and ¢, the wave function
can be written as:

v (7“, v, 90) =R (T) }/lm (197 @)
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Quantum mechanical description of the hydrogen atom

Solution of the Schrodinger equation for the hydrogen atom

Eigenfunctions:

v (7“, v, QD) = Ry (r) Y'lm (ﬁ’ 90) = R, (7“) lm (19) ol

Eigenvalues (hartree units):

1
E,=—(F
2n2( )
Quantum numbers:
n = 1,2,3,..
I = 0,1,2,..n—1

m = —1,—14+1,..,0,1—1,1
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Quantum mechanical description of the hydrogen atom

Eigenfunctions of the hydrogen molecule (Vi ):

Wigo = ﬁe_r
Waoo = 4\/15(2 —r)e”"?
Uy = 4\/1§re_"“/2 cos (1)

Vo1 = —8\157“6_7”/2 sin(9)e*"?

Wa00 = 5725=(27 — 187 + 2r2)e /3

= 81\/—7“(6 rYe”"/3 cos(19)
V3141 = 81\/—7“(6 r)e "% sin(9)e™
Wi20 = groe=" e "/3(3 cos?(9) — 1)
Wsot1 = gr =T e~ "/3 sin(¥) cos(¥)eT¥

— 1 ,',,26—7“/3 Sin2(19)ej:2igo
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Angular momentum of the H atom

The angular momentum values belonging to the orbitals of the H atom:

orbital n | m AX=11+1[R] L =mh
Is 1 0 0 0 0
25 2 0 0 0 0
20 2 1 0 2 0
2p1 2 1 1 , 1
2p_1 2 1 -1 . -1
3 3 0 0 0 0
30 3 1 0 2 0
3p1 3 1 1 , 1
3p.1 3 1 -1 , -1
3dg 3 2 0 6 0
3d;, 3 2 1 6 1
3d_; 3 2 -1 6 -1
3dy 3 2 2 6 2
3d_y 3 2 -2 6 -2
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Angular momentum of the H atom

Angular momentum vectors of the 3d orbitals:

z
— T +2

+1

(b)

27



The states of the hydrogen atom including spin

Wave function:

n,l,m,mg
Quantum numbers:
n = 1,2,...
[ = 0,1,...,n—1
m = —l,—l+1,...,1
11
ms = ——,—
2" 2

Energy depends still only on quantum number n (2n?-fold degeneracy):

1
E, = —|FE
2n2[ a

28



Electronic structure of atoms

The Hamiltonian in atomic units:

electrons electrons 7 electrons electrons
2~ A
0 = - § A -y =y E >
/”1.
o ) Z% 1<

kinetlc energy of electrons electron—nuclei attraction electron—electron repulsmn

e /4 being the charge of nucleus A;
e 7;; being the distance of electrons i and j;

e ;4 Is the distance of electron 7 and nucleus A;

29



Electronic structure of atoms

The Hamiltonian in atomic units:

electrons electrons 7 electrons electrons
2~ A
0 = - § A -y =y E >
/”1.
) 1A 1<

NG 7

] . . TV
kmetlc energy of electrons electron—nuclei attraction electron—electron repulsmn

Wave function of the many electron system

v = \Ij(wlaylaZ17017m27y27227027"'7xn7ynazn70-n)

v(1,2,...,n)

I.e. a function with 4n variables.
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The Independent Particle Approximation

a) Hartree-method: Approximation of the wave function in a product form

E[/(’I"l, T2, ..., rnz ~ ?1(7‘1) . qbg(’r'g)... . q/)n(rnz

wave function product of spin orbitals

In this case the Schrodinger equation reduces to one-electron equations:
HY = FEV = hl(Tl)le(?"l) — 51¢1(T1)

ha(12)d2(ra) = ea¢p2(r2)

ﬁn(rn)qbn(rn) = €nPn(rn)

One n-electron equation = system of n one-electron equations

N N 1 Z
h, — hfff:——Ai——A—l—V;eff
2 TiA

where fof is the interaction of electron 7 with all other electrons.
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Pauli principle and the Slater determinant

b) Hartree-Fock-method:

To fulfill anti-symmetry of the wave function, use determinant (Slater determinant):

. ¢1(7“1) ¢2("“1) Tt Cbn("“l)
U (ry, re, ..., Tp) = ﬁ ¢1(57”2) ¢2(E?”‘2) ' ' (,/5n(57”‘2)
¢1(rn)  d2(rn) - Pn(Tn)

To fulfill the indistinguishability, use the same operator (Fock operator) for all electrons:

ATf o F(r) = N e
2 TiA
with U¥ being an averaged (Hartree-Fock) potential.
The Hartree-Fock equation:
frdei(r) = epi(r) i=1,---,n

32



Electronic structure of atoms

In the Independent Particle Approximation the equations to solve:

Since h is similar to the Hamiltonian of the hydrogen atom, the solutions will also be
similar:

The angular part of the wave functions will be the SAME. Therefore we can again classify
the orbitals as 1s, 2s, 2pg, 2p1, 2p_1, etc.

The radial part: R(r) will differ, since the potential is different here than for the H atom:
since it is not a simple Coulomb-potencial, the degeneracy according to [ quantum number
will be lifted, i.e. the orbital energies will depend not only on m but also on I (g = &,).

33



Electronic structure of atoms: angular momentum

21, &2
2

(VA
N

one particle:

A

n»
N

many particle: I* L, S

The angular momentum of the system is given by the sum of the individual angular
momentum of the particles ( so called vector model or Sommerfeld model):

L = Zi(i)
S = Zé(i)

It follows that the z component of L and §A is simply the sum of the z component of the
individual vectors:

M, = Zm(i) Mg = st(i)

34



Electronic structure of atoms: angular momentum

L=} 1) S=> 53

The length of the vector is much more complicated: due to the quantizations and
uncertainty principle, we can get different results: For exemple for two particles:

L o= (1) +U2), (1) +1(2) = 1),---, [I(1) — i(2)]
S = (s(1)+s(1), (s(1) — s(2))

35



Classification and notation of the atomic states

The Hamiltonian commutes with ﬁ2, IA/Z, S? and S’Z operators = we can classify the
atomic states by the corresponding quantum numbers of the angular momentum operators:

\PL,MLaS,MS — |L7ML757 Ms>
The latter notation is more popular.

In analogy to the hydrogen atom, the states can be classified according to the quantum
numbers:

Angular momentum:

L= 0 1 2 3 4 5

notation: S P D F G H

degeneracy (2L+1) 1 3 5 7 9 11
Spin momentum:

S= 0 5 1 . 2

multiplicity (25+1): 1 2 3 4

denomination: singlet doublet triplet quartet

36



Classification and notation of the atomic states

In the full notation one takes the notation of the above table for the given L and
writes the multiplicity as superscript before it:

Examples:
L =0,5S=0:"'S read: singlet S

L=2,5=1:°D read: triplet D

Total degeneracy is (25+1)(2L+1)-fold!!

37



Construction of the atomic states

Since there is a high-level degeneracy, degenerate orbitals are often not fully occupied —
configuration is not sufficient to represent the states.

Example: carbon atom
152 252 2p2

2p is open subshell, since only two electrons are there for six possible places on the
2p subshell.

What are the possibilities to put the two electrons onto these orbitals?
spatial part: 2pg, 2p1, 2p_1
spin part: «, B

These gives altogether six spin orbitals which allow to construct ( g ) = 15

determinants, i.e. we have 15 different states.

38



Construction of the atomic states

Let us construct the states by summing the angular momenta:
(H=1,1(2) =1 — L=001)+12),l1)+12)—-1),...,[I(1)=102)]=2,1,0

— S =1(s(1)+s5(2)),(s(1) —s(2)) =1,0

s(1) = %, s(2) = %

Possible states:
's 'p D
S 3p °D

Considering the degeneracy there are 36 states. But we can have only 15, as was shown
above!

39



Construction of the atomic states

We also have to consider Pauli principle, which says that two electrons can not be in the
same state.

If we consider this, too, the following states will be allowed:
's 3p 'D

These give exactly 15 states, so that everything is round now!

40



Construction of the atomic states

Summarized: carbon atom in the 2p? configuration has three energy levels.

What is the order of these states?

Hund's rule (from experiment; ,Nun, einfach durch Anstieren der Spektren”):

e the state with the maximum multiplicity is the most stable (there is an interaction
called ,,exchange” which exists only between same spins);

e if multiplicities are the same, the state with larger L value is lower in energy;

In case of the carbon atom:

E3P < ElD < Els

41



Spin-orbit interaction, total angular momentum

As in case of the hydrogen atom, orbital and spin angular momenta interact. The
Hamiltonian changes according to these interaction as:

A

H — ﬁ+Z<i(z‘).§(z‘)

Consequence: L2 and S? do not commute with H anymore, thus L and S will not
be suitable to label the states (,,not good quantum numbers”). One can, however, define
the total angular momentum operator as:

198

— L+

<

which
[H,J]=0 [H,J.]=0

i.e. the eigenvalues of J?% and J, are good quantum numbers.
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Spin-orbit interaction, total angular momentum

These eigenvalues again follow the same pattern than in case of other angular
momentum-type operators we have already observed:

J = J(J+1) A7

Jz — MJ [h]

The quantum numbers J and M of the total angular momentum operators follow
the same summation rule which was discussed above, i.e.

J = L+S,L+S—1,---,|L—S5|

Energy depends on J only, therefore degenerate energy level might split!!
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Spin-orbit interaction, total angular momentum

Notation: even though L and S are not good quantum numbers, we keep the notation
but we extend it with a subscript giving the value of J.

Example |: carbon atom, > P state:
L=1, S=1 — J=2,1,0
P — °PR, P, PRy
Energy splits into three levels!

Example Il: carbon atom ' D state:

L=2, S=0 — J=2
'p 5 p,

There is no splitting of energy here, J can have only one value. This should not be a
surprise since S = 0 means zero spin momentum, therefore no spin-orbit inetarction!!!
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Electronic structure of atom: magnetic field

Considering the total angular momentum, the change of energy in magnetic field reads:

AE = Mj-up- B,
M, = —J—J+1,...,J

This means, levels will split into 2J + 1 sublevels!
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Carbon atom in 2p? configuration:

| s e

Electronic states of atoms: summary
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Electronic states of atoms: summary

Other configuration for p shell:

pt and p° ’p B, F
p? and p °p, 'D, 'S C,0
P> 15 2p 2p N
p° (closed shell) 's Ne
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Basic Terms of Group Theory

A group (G) is a collection of elements which are interrelated by an operation:

A-B = C
for which the following rules must be obeyed:

e set G is closed under the operation:
if A, BeGthen(C eg

e there must be a unit element (F, identity) such that:
E-A=A-FE=A

e multiplication is associative:
A-(B-C)=(A-B)-C

e all elements must have its reciprocal (A1) in the group:
A-S5=5-A=F S=A"1
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Basic Terms of Group Theory

Note that the multiplication is not necessarily commutative:

A-B + B-A

Abelian group: the multiplication for any pair of elements is commutative.
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Basic Terms of Group Theory

Note that the multiplication is not necessarily commutative:

A-B + B-A

Abelian group: the multiplication for any pair of elements is commutative.

Dimension of the group (h):
e finite group: h < oo

e infinite group: h = oo

50



Basic Terms of Group Theory

Group multiplication table: shows the results of multiplication for any pair
of group elements

A B C D
AlA B C D
BB A D C
c|{C D A B
DD C B A

Properties:

e cach element appears only once in each row and column

e multiplication is single valued
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Basic Terms of Group Theory

Group multiplication table: shows the results of multiplication for any pair
of group elements

N>

OO0 w> >
N O > W
W >0 00
> N O 0

Properties:

e cach element appears only once in each row and column

e multiplication is single valued

Subgroup: is a subset of elements which obey the definition of a group, i.e.
multiplication does not lead out of the group.

It must always include E/, and of course the invers of all elements.
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Basic Terms of Group Theory

Conjugate elements: A and B are conjugate to each other, if
e A B, X €¢G and
e B=X"1.4.-X

Properties:

o If A is conjugate to B than B must be conjugate to A, i.e. the group
must have an element Y such that:

A=Y1.B.Y
e If A is conjugate to B and C then B and C' are also conjugate to A.

Class: the complete set of elements which are conjugate to each other.
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Basic Terms of Group Theory

Representation of a group

Remember the definitions: the group is defined by the multiplication
table (relation of the elements) and not by any individual property of the
elements.

The same group can also be represented for example by:

e operators (e.g. symmetry operation — symmetry groups)

e permutations (permutational groups)

e matrices (matrix representation)
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Basic Terms of Group Theory

Assume a group with the following multiplication table:

E B C D
E|E B C D
B|/B E D C
C|C D E B
DD C B E

1 0 0 -1 0 O

E=1 01 0 B = 0O -1 0

0 0 1 0O 0 1
1 0 0 -1 0 0
C=10 -1 0 D = 0 1 0
0 0 1 0 0 1
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Basic Terms of Group Theory

Assume a group with the following multiplication table:

Cow | E Cy o, o)
E | E Cy o, o
02 CQ E 0';) Ov
o, | 0, o E Oy
o, | o, o, Cy FE

The following matrices obey the same multiplication table:

1 0 0 -1 0 0

E=| 01 0 Cy = 0 -1 0

0 0 1 0 0 1
1 0 O -1 0 0
opb=1 0 -1 0 ol = 0 1 0
0O 0 1 0 0 1
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Basic Terms of Group Theory

Representation of a group |

How many matrix representations can a group have?
— As many as you just generate!!!

For example, by similarity transformation we get new set of matrices
which also form a representation:

A =L TAL B' = L7 'BL
A-B = L'AL.- L7 'BL=L"'A.BL=L"'CL ="

By similarity transformation the character of a matrix'| does not change

— the characters of the representing matrices will be characteristic
to the representation of the given dimensionality.

1Sum of the diagonal elements; also called ,,spur” or , trace”.
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Basic Terms of Group Theory

Representation of a group Il

How many matrix representations can a group have?
— As many as you just generate!!!

Also, you can create representation by forming direct sum of matices:
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Basic Terms of Group Theory

Consider a group of two elements:

A B
A|lA B
B|B A
Representation (1) (one dimensional): | Representation (2) (two dimensional):
1 0
(1) — (2) —
A = (1) A= (g 1)
0 =
(1) = (— (2) —
. so= (% 1)

Direct sum representation:

1 0 0 1 0 0
A=AV A@D | 0 1 0 B=BWYapB®? = 0O 0 i
0 0 1 0 —i 0
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Basic Terms of Group Theory

Now the other way around: reducing the representation:

110 O —-1710 O
A=1 0|1 0 B = 00 =2
010 1 0 -2 O

In case of matrices showing block structure, the representation can be
split up. Here:

A = ADgpA®
B = BOgB®

There are two subrepresentations in this case, matrices A(l), B form
representation I'(") | and matrices A(?), B(?) form representation I'(?).

In notation:

r = rWgr®
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Basic Terms of Group Theory

Representation of a group 1]

Are there special ones among the representations?
— Yes, these are the so called irreducible representations.

Irreducible representations: is a nonzero representation that has no proper
subrepresentation.

e basic building blocks of representations

e any representation can be build up from these basic elements

60



Basic Terms of Group Theory

Representation of a group Il
General procedure of reducing the representation:
— assume we have a group represented by matrices E, B, C, D, ...
— we perform the same similarity transformation on all of them:
E = L 'EL

B = L 'BL
C = L'CcL

— similarity transformation does not change the multiplication rules
— transformed matrices still give a representation (same character).
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Basic Terms of Group Theory

— Special transformation can lead to block diagonal matrices, e.g.:

( B, 0 0 0 -- \
0 B, 0 O :
B =L 'BL = 0 0 B 0
0 0 0 B

— Block diagonal matrices can be multiplied block-wise:

B, - C, = D
B, C; = Dy

obeying the same multiplication rules

— each block is a new representation.




Basic Terms of Group Theory

Therefore:

If there exists a transformation which brings all matrices of a group to the same block
structure, the representation can be split into ,,smaller” representations — i.e. the original
representation reducible.

Note:

e the character of the representation is changed when it is splited into smaller pieces

e the sum of the character of new representations equals the character of the original
representations

Notation: ' =1y @ T'a G I's P - --

Therefore, a representation is Irreducible if:

e no transformation leading simultaneously to block structure of the matrices exists
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Basic Terms of Group Theory

How many irreducible representations of a group are there?

— One can show that the number of all irreducible representations equals
to the number of the classes of the group.
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Basic Terms of Group Theory

How many irreducible representations of a group are there?

— One can show that the number of all irreducible representations equals
to the number of the classes of the group.

Character table:

Example: Character table of the (5, point group

Cop | B Co ou(xz)  0u(yz)
Aq 1 1 1 1

Ao 1 1 -1 -1

B 1 -1 1 -1

B 1 -1 -1 1

Columns correspond to the classes (in this case elements)

Rows correspond to the irreps and show the character of the elements
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Basic Terms of Group Theory

Basis of a representation
We know the relation between operators and matrices:

Consider a set of (linearly independent) functions {¢;} such that the
space spanned is an invariant space with respect to all operators of the

group. E.g.:
Ap; = ) Ayo;
J
Bo; = > B¢,
J

(jqbz‘ = Z Cij®;
J
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Basic Terms of Group Theory

Basis of a representation

The matrix representation of an operator in this basis can be given as:
Ay = (¢ilAle))
(= [ éi@) dgy(w)da)

The matrices defined this way from operators belonging to a group, form also a group
with the same multiplication table:

e the matrices A, B, ... are the matrix representation of operators A, é, ... on the basis

{d:}.

Notes:

e when transforming the matrices, in fact we transform the basis

e when finding the block diagonal form of the matrices and splitting up the representation
accordingly, we divide up the space into smaller subspaces. Now the elements of
subspaces will be used as basis of the representations.
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Basic Terms of Group Theory

Reducing reducible representations

To split up reducible representations into irreducible ones, one can use
the following formula:

1

= N ) ()

with:
h: order of the group
Ny order of the class

X"'(k): character of kth class corresponding to irrep i

X (k): character of kth class corresponding to the reducible representation




Basic Terms of Group Theory

To find the subspace spanning the irreducible representations, the following
operator can be used, which projects into the space of the ith irrep:

Pi = ZXZ(R) R
R

with R being the element of the group, XZ(}A%) being its character corres-
ponding to the ith irrep.
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Basic Terms of Group Theory

Reducing reducible representations

Example: Two matrices A and B considered above:

1 0 0 -1 0 0
A=101 0 B = 0O 0 1
0 0 1 0 —2 0

Character table for this group?]

c, |A B
A’ 1 1
A” 1 -1
I's gim | 3 -1

The characters of the I's 4;, representation are given as the spur (trace) of the

corresponding matrices.
Note that this is the C's point group, introduced later.
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Basic Terms of Group Theory

c, |A B
A’ 1 1
A” 1 -1
F3 dim 3 -1
ni =+ > ey Ne X (k) x(k)
NA/= %(113+11(—1)) =1 N %
Thus: I's g;=A" @ 2 A”
11010 0 0
A = 0110 B = —11 0
0 | —1

(1-1:34+1-(=1)-(=1)) = 2
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Basic Terms of Group Theory

Direct product representations

Consider two representations on the two bases {¢;(z)} and {¥;(y)}:
Agi(z) =) AL ¢;() Ai(y) =) ALw;(y)
J J

Then:
Agi() = ) ) ALANYR(x)du(y)
k [

i.e. the set {fi;j(x,y)} = {¢i(z) ¥;(y)} also form a basis for the represen-
tation, that of the outer product of the two matrices:

AP®Y A¢®A¢

with A?®¥ having a dimension as product of the dimensions of the two
representations.
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Basic Terms of Group Theory

Direct product representations

Outer product of two matrices:

A1 A
A =
( A Az

A®B

(

Character of A ® B?

AByy
A By

A11B14
A21B14
A11B21
A1 B2y

A B15
A B

Ai12B14
Ag2B11
A28
A9 B2

A11Bi2
A21B12
A11B2
A2y Bos

A12B19
A9 B9
A28
AgoBa9
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Direct product representations

Outer product of two matrices:

S

A®B

All
A21

(

A12
A22

A B
A By

A11B14
A21B14
A11B21
A1 B2y

A B
A B

Ai12B14
Ag2B11
A28
A9 B2

A11Bi2
A21B12
A11B2
A2y Bos

XAaeB = (A11 + Ags) - (B11 + Ba2) = x4 - XB

Basic Terms of Group Theory

A12B19
A9 B9
A28
AgoBa9




Basic Terms of Group Theory

Direct product representations

Notation:

ooy — F(b@Iﬂb

Character of the direct product representation:

The characters of the direct product representation are the products of
the character of the representations forming the original representations.
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Spatial Symmetry of
Molecules




Symmetry operations

A

e (), — proper rotation (around the proper axis) by 27 /n

120°
Ca-i-

-120°
g Cs
S — =

m—n
m—n

" %,

F

e o — reflection (special cases: 6, 6, 64)

75



Péter G. Szalay Advanced Physical Chemistry (fizkemhk17em)

Symmetry operations

e S, — improper rotation: rotation (C),) followed by reflection in a plane
perpendicular to the rotation axis (o)

ST
e

@ c 9 @ 9

i
rotate by 90° : reflect throwgh plane
Q

e i — inversion (% = 32)

A

e I/ — unity: maps the object on itself (required only for mathematical
purposes)

ELTE Eotvos Lordnd University, Institute of Chemistry 76



Point groups
Symmetry operations leaving an object (molecule) unchanged, form a group.

E.g. water (see next page):

A

Operators: Cy, 6,, 6 E

v’

Multiplication table:

Cow | E Cy 6, &,
E|E C, 6, ¢
é 2 é 2 E o ; Oy
6, | 6, 6, E C,
& o 6, Co E

7
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Point groups

- YA 5
Water: Cy, 0y, 0,,, &

Mirror Plane Mirror Plane

GFZI

2-Fold Rotational Axis
Cs

U-hlz

ELTE Eotvos Lordnd University, Institute of Chemistry
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Point groups

A

Ammonia: é’g, 3 times 6, E

Mirror planes

&

H

T @

C; rotation axis

© 2007 Thomson Higher Education

& ELTE Eétvés Lorand University, Institute of Chemistry
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Point groups

Benzene: CA*6, 6 times ég, o, (horizontal, perpendicular to the main
axis), 6 times &, (including the main axis), i, etc.
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Generators of a group

Set of elements (S) of the group G are called generators if all elements of
G can be generated by multiplication of the elements of S.

Example: benzene
Elements of the point group Dgy:
E, 2Cs, 2C5, Cy, 3C%, 3057, 1, 286, 285, 61, 364, 364
Three generators are able to produce these elements.
Set 1: Cg,Ch and .
Cy3=Cs-Cs, Cy=0C5-Cs-Cs, Co” =Cg-Ch, 6, =0CY i etc.
Set 2: Cs, Gy, G

Set 3:..... several others

The set of the generators is not unique!
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Point groups

Symmetry of molecules are represented by the collection of symmetry
operations leaving it unchanged, i.e. by the point group.

Point groups are represented by the so called Schoenflies-symboles:

AN

e (,: groups including proper rotation C,, only

e (,,. groups including proper rotation C,, and reflection to a plain
including the axis o,

e C,n: groups including proper rotation C,, and reflection to a plain
perpendicular to the axis gy,

e D, : groups including proper rotation C,, and n additional proper rotation

A

C5 perpendicular to the main axis

e D,;: same as D,, with and additional reflection to a plane perpendicular
to the main axis.




Point groups

D,,q: same as D,, with and additional reflection to a plane including the
main axis.

S,,: includes improper rotation .S,

Ty: tetrahedral point group

Csov: proper rotation with arbitrary angle (C) and reflection to a plane
including this axis (6,)

Dop: proper rotation with arbitrary angle (C’OO) and reflection to a plane
perpendicular to this axis ()

O3 : spherical symmetry
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From
(&l
ia) (b}
M
Cat
Muolecule
Y
Y M
e
LE Linea N | |
v Selact T, with
= highest m; then, is s 5 I
WO OF L4 L
Lt ¥ | more |N iy L Gyt
re Co,n>2 N
7
M Y ] o7 M &7 ¥
"’lr— iz M '
M Y
” . it My ? A7
Cs? (b} ¥
I 1
5O® ® O &

N rth
o, D ]
Linear groups Cubic groups @ @ @ @ @ @ @ @ @

Figure 3.15 N
Shriver, Atkins, and Langford: INORGANIC CHEAISTRY, second adition

£1990, 1984 D. F Shriver, B WW. Atkins. and C. H. Langford
W. H. Freeman and Company

" ELTE Ebtvds Lorand University, Institute of Chemistry 84



Molecular examples:

Point groups

molecule symmetry operations point group
water Cs, 6y, 0., E Cay
ammonia ég(Z) 3x 6, E C'30
benzene 6'6, 6 x C’Q, op, 6 X 0, i, etc. Degy,
formaldehyde Cy(2), 64, 6, F Ca
ethene Doy,
acetylene Doy,

carbon monoxide
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& = of

SF.Cl: HON: B(OH),:

Cp ca €y

Péter G. Szalay

H,0O:

D34 Did Dy 4 “h 4
. g 2-: . g :
C.H,: oK [pdc, ] Fe(C.H.),: C Hy H,:
Do, D Dy, Ds;, Dy, Dooi

ry/Molecules. html

@
5 |

http://newton.ex.ac.uk/research/gsystems/people/goss/symm
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Symmetry and quantum
mechanics




Symmetry and quantum mechanics

Symmetry operations are represented by operators (R).

What does it mean mathematically: ,, The operations leave the molecule
unchanged”?

It does not change the properties — The symmetry operators commute
with the corresponding operators (e.g. Hamiltonian):
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Symmetry and quantum mechanics

Symmetry operations are represented by operators (R).

What does it mean mathematically: ,, The operations leave the molecule
unchanged”?

It does not change the properties — The symmetry operators commute
with the corresponding operators (e.g. Hamiltonian):

Figure 10.2: Transformation of functions

o4t
Action of a symmetry operator on a function: 0 f

G, !




Symmetry and quantum mechanics

Commuting operators have a common set of eigenfunctions

4

The eigenfunction of the Hamiltonian must also be eigenfunction of the
symmetry operators.

3For easier understanding we disregard degeneracy for the time being.
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Symmetry and quantum mechanics

What are the eigenvalues?

e Like the object (molecule), the wave function is unchanged under the
symmetry operation: » =1

e The wave function can also change sign under the symmetry operation,
since in this case the density |¥|? is still unchanged: r = —1

This eigenvalue will be representative for the wave function (,,good quantum
numbers™):

e r = 1. symmetric

—1: antisymmetric

°
=
I




Symmetry and quantum mechanics

RU = rU

What about the eigenfunctions?
e They form a basis for a representation of the symmetry operations.

Symmetry axiom: the eigenfunctions of the Hamiltonian form an irreducible
representation of the symmetry operations.

91



Symmetry and quantum mechanics

We have several symmetry operations, all can have two eigenvalues.
For water, this means 23 possibilities (£ has only one eigenvalue).

Are all of these possible?? No, only four combinations are possible:

CZU ) 02 Ozx O zy
A 1 1 1 1

A, 1 1 -1 -1
b, 1 -1 1 -1
By 1 -1 -1 1

The four possibilities are the irreducible representation.

The character table shows the eigenvalue of the individual operators
corresponding to the irreps.

Thus, wave functions can be classified according to the rows of the
character table, i.e. according to the irreps.
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Symmetry and quantum mechanics

We have several symmetry operations, all can have two eigenvalues.
For water, this means 23 possibilities (£ has only one eigenvalue).

Are all of these possible?? No, only four combinations are possible:

CQU E C12 Ozx O 2y
A 1 1 1 1

Ay 1 1 -1 -1
B 1 -1 1 -1
By 1 -1 -1 1

The four possibilities are the irreducible representation.

The character table shows the eigenvalue of the individual operators
corresponding to the irreps.

Thus, the wave function of water can be classified as A;, Ay, By or Bs.
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Symmetry and quantum mechanics

Other example: ammonia

Cgv E 203 3010
A 1 1 1
Ay 1 1 -1
E 2 -1 0

Here there is also two-dimensional irrep. This means:

e there are two eigenfunctions of the Hamiltonian which have the same
symmetry property

e any combination of these two functions still define a representation of
the group (with the same character)
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Symmetry and quantum mechanics

Other example: ammonia

Cgv E 203 3030
A 1 1 1
Ay 1 1 -1
E 2 -1 0

Here there is also two-dimensional irrep. This means:

e there are two eigenfunctions of the Hamiltonian which have the same

symmetry property

e any combination of these two functions still define a representation of

the group (with the same character)

= it follows that these functions belong to the same eigenvalue of the

Hamiltonian, i.e. degenerate!




Symmetry and quantum mechanics

In summary:

It is worth to use symmetry:

e to classify states
e to speed up calculations

e predict degeneracy
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Hamiltonian of molecules

I:I = fel{r) -+ Vel—nucl(ry R) + ‘A/el—el(r> + Vnucl—nucl(R)J_F?HUCl(R)J
Ae(r.R) Tn(R)
H(r,R) = H.(r,R)+T.(R)
with

e r denoting the coordinates of the electrons;
e R denoting the coordinates of the nuclei;

e T),.c kinetic energy operator of the nuclei;

e see also earlier notations.
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Wave function of molecules

v = Y(r,R)

It depends on the coordinates of the electrons and nuclei, but these are not
separable due to coupling present in the Hamiltonian:

¥(r,R) # &(r)x(R)

Schrodinger equation

A

H(I‘, R)\IJ(I‘, R) — ETOT\IJ(I', R)

The equation depends on both the electronic and nuclear coordinates, fully
coupled!




The Born-Oppenheimer approximation

electrons are much lighter than electrons (ﬂ{‘fl ~ 1836)
|l equipartition
electrons are much faster
4
electrons folow nuclei instantaneously (adiabatic approximation)
J
from the point of view of electrons the nuclei are steady
J

Equation for the electronic problem: H.(r;R)®(r;R) = E(R)®(r; R)
for nuclei: (T,, (R) + E(R)) x(R) = Erorx(R)
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Born-Oppenheimer approximation

Notice that:

e in Born-Oppenheimer (BO) approximation we have separate uncoupled
equation for electrons and nuclei;

e nuclei are not motionless;

e the potential E(R) acting on the nuclei is the coordinate dependent
energy from the electronic Schrodinger equation;

e potential F(R) is thus the result of the Born-Oppenheimer approxi-
mation, without this the notion of potential (potential curve, potential
surface, PES) does not exist;

e generally, BO is a good approximation, but it fails if the energy of
different electronic states are close (e.g. in photochemistry).
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The HJ molecular ion

This is a three-body problem and can not be solved analytically.

However, using the BO approximation, it can be reduced to a single-
electron problem:

The Hamiltonian:

A 1 1 1 1
H = ——A— — —
2 ! A TlB—i_R

with 714 and rip are the distances of the electron from nuclei A and B, R
Is the distance of the two nuclei.

The Schrodinger equation:

A

H®(1;R) = Ei(R)®(1;R)

Analytic solution is possible in elliptic coordinates.
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Character table for point group D~h

D%h E
A1g=E *g +1
A2g=E 'g +1
E= Hg +2
E2g=ﬁg +2
E;,=%, +2

ng +2
AT 4
Azu:E Wt
E =L v
BB, w2
=%y #2
Enu +2

2C%

+1

+1
+2cos(®)
+2cos2 )
+2cos(39)

+2cos(n #)

+1

+1

+2cos( ¢)
+2cos(2®)
+2cos(3®)

+2cos(n "’)

“va

v

+1

i

+1

+1

+2

+2

+2

+2

28%

+1

+1
2cos()
+2cos2 )
2cos(39)

(-1)"2cos(n®)

-1
-1

+2cos(P)
2cos2®)

2cos(3 '1’)

D™ 12cos(n)

[ri¥all
C2

+1

o

linear functions,

rotations

(%, y)

quadratic
functions

X2+y2, Z2

(xz, yz)

(x%-y%, xy)

cubic
functions

23, z(x2+y2)

(x2%, y22) [x(x*+y2), y(x*+y?)]
[xyz, Z(xz-yZ)]

[y(3x2-y?), x(x>-3y?)]

ELTE Eotvos Lordnd University, Institute of Chemistry
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HJ molecule ion: solutions

.H____,.______..
_. i ..!; wad BT Al
e waws

A

@y, symmetry Y.

symmetry: ¥¥

0,

-4 ELTE Eotvos Lorand University, Institute of Chemistry
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ar

Energe / au

HJ molecule ion:

HZ2 lon_Energien.gif

solutions

| :

" ELTE Eétvés Lorand University, Institute of Chemistry
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HS molecule ion: what is the chemical bond

2
\%\/\/\

Bonding

2
kA

Anti-bonding

e decrease of energy when atoms approach each other

e increase of electron density between the atoms
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HJ molecule ion: minimal basis
Basis: xy1 = 1sgy X2 = lsp
Overlap of the basis functions: S;; = Soo =1 So1 = (x1|x2) = S
Matrix elements of H:

Hii = (xa|H|x1) = (1sa|H|1s4) = a

Hay = (x2|H|x2) = (1sg|H|1sp) = «

H12 p— <X1|]:[‘X2> = <1SA H 1SB> — B

The H matrix and the S matrix:

o
N
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HJ molecule ion: minimal basis

Eigenvalue equation Hc = E'Sc:

(50)(a) ==(s7)(a)

Secular determinant:

a—FE [f—FES 0
B—ES a—F
Y
o+ [ 1
'T1+S T 200+ 9)
— 1
By = 90 Oy =—Ch =

105



HJ molecule ion: minimal basis

Orbital diagram:

Eelative Energv
-
]
s
O
¢
=3

From this calculation: R, ~ 2.5 bohr. How good is this?
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Electronic structure of
diatomic molecules
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Character table for point group D~h

D%h E
A1g=E *g +1
A2g=E 'g +1
E= Hg +2
E2g=ﬁg +2
E;,=%, +2

ng +2
AT 4
Azu:E Wt
E =L v
BB, w2
=%y #2
Enu +2

2C%

+1

+1
+2cos(®)
+2cos2 )
+2cos(39)

+2cos(n #)

+1

+1

+2cos( ¢)
+2cos(2®)
+2cos(3®)

+2cos(n "’)

“va

v

+1

i

+1

+1

+2

+2

+2

+2

28%

+1

+1
2cos()
+2cos2 )
2cos(39)

(-1)"2cos(n®)

-1
-1

+2cos(P)
2cos2®)

2cos(3 '1’)

D™ 12cos(n)

[ri¥all
C2

+1

o

linear functions,

rotations

(%, y)

quadratic
functions

X2+y2, Z2

(xz, yz)

(x%-y%, xy)

cubic
functions

23, z(x2+y2)

(x2%, y22) [x(x*+y2), y(x*+y?)]
[xyz, Z(xz-yZ)]

[y(3x2-y?), x(x>-3y?)]

ELTE Eotvos Lordnd University, Institute of Chemistry
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H-> molecule

Energy
[ ]

1z %i ‘—Ti 1z
Atorrie Orbil S Atorrie Otbital
{1 .
|3

Molecular Ctbital

Configuration: 1o,

v+ + _ vt
Symmetry of the state: .7 ® ¥ 7 = X/
Notation for the state: 'Y}

Bond-order: 1, since one bonding orbital is occupied by two electrons
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He> molecule

He He, He

F

antibonding
ox18§

; ml'lO('E

%
e 4 e
15 \% 15

ols
bonding MO

Configuration: 1o 107,
Symmetry of the state: X7 @ X @ X7 @ ¥ = X7
Notation for the state: 'X}

Bond-order: 0, since one bonding and one anti-bonding orbital is
occupied by two electrons each.
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Diatomic molecules: molecular orbitals

20 20,

ELTE Eotvos Lordnd University, Institute of Chemistry 111
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Diatomic molecules: molecular orbitals

To construct the next orbitals, the 2p orbital of the atoms can be used.
Considering also the symmetry (z is the main axis of the molecule):

TP e
..Q+ ..O _h ..O..O & Anllh”“’d"]g
prHp
L JORO, B ey RLL

+
Q . ﬁr Q’ T Antibomding
: : ﬂ,., ® m Bonding MO

ELTE Eotvos Lordnd University, Institute of Chemistry 112
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Diatomic molecules: molecular orbitals

1m, 30,

L7, 30,

ELTE Eotvos Lordnd University, Institute of Chemistry 113



Li> molecule

Li Li, Li

15 +l- gt

-
e
e
.-"-. i
L T
g 1Y
-
g

BRargy

Configuration: lo;lo;20;
Lyt

Symmetry of the states: X7

Notation for the state: "X}

Bond-order: 1, since two bonding and one anti-bonding orbitals are
occupied by two electrons each.
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0O, molecule

Az oxigénmolekula elektronszerkezete

PHEC L, T

(o)

o % #4511

Configuration: 103 103 203 203 1773 303 17r§, i.e. open shell
Possible symmetry of the state: II, ® 11, = Z;r 5 Zg_ DA,
Possible states considering also Pauli-principle: 329_ 12; 1Ag

In order of energy: E3Zg_ < ElAg < ElE;
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0O, molecule

Az oxigénmolekula elektronszerkezete

A

22 e
o g

4 +f 441 7

Configuration: 103 103 203 203 1773 303 17r§, i.e. open shell

Bond-order: /22, since three bonding orbitals (3o, 17,) are occupied by six electron,
while there are only two electrons on the anti-bonding 17, orbital palyan két elektron
van.)

Az oxygen is paramagnetic since its ground state is a triplet!!!!
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Electronic structure of the AB-type diatomic molecules

Example: CO molecule:
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Electronic structure of water
molecule
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Molecular orbitals of water

Orbitals are obtained from |[EM, these will be occupied according to increa-
sing orbital energy (Aufbau-principle)

Implementation: IEM with LCAO-MOY
sz' — aniXa

where Y, is a basis function.

The so called minimal basis set will be used, which includes one function
for each occupied subshell:

H: ].SA, 1SB

O: 1s, 2s, 2px, 2py, 2p;

4we show the results of Hartree-Fock-Roothan calculations
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Consideration of symmetry for water molecule

Basis of the representation: H: 1sa, 1sg, O: 1s, 2s, 2px, 2py, 2p;

Character table for (5, point group with the characters of the above
representation (the molecule is in the zz plane):

Cop | B Co ou(xz)  0u(yz)
Aq 1 1 1 1

Ao 1 1 -1 -1

By 1 -1 1 -1

B 1 -1 -1 1
Fbasis I 1 5 3

(The characters of the representation in the seven dimensional space (I'pgsis) will be
evaluated on the blackboard.)
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Consideration of symmetry for water molecule

Cop | B Co ou(xz)  0u(yz)
Aq 1 1 1 1

Ao 1 1 -1 -1

B 1 -1 1 -1

Bs 1 -1 -1 1
Fbasz’s [ 1 5 3

n; =+ > r_y Ni X' (k) x(k)

nar= (117 + 111 + 115 + 1-1:3) = 4

na2= +(1- 17+ 111+ 1-(=1)-5+1:(—1)-3) =0
np1= 2(1-1-7+1-(—= 1)1+ 1-1.-5+ 1-( = 1)-3) = 2
npe= +(1- 174+ 1-(—1)-1+1(—-1)5+113) =1

Thus: Fbasis:4 A1 b 2 Bl D Bg

This means, there are four ay, two by and one b, orbitals.
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Bonding orbitals of water

lay : 1s 2a1 : 2s(—2p,)+1sa+1sp 161 : 2p,+1s4—1sp

3ay : 2p,(+2s) 165 : 2p,
Configuration: (131)2 (231)2 (1b1)2 (331)2 (1b2)2

State: A (orbitals are fully occupied = total symmetric singlet state)
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Péter G. Szalay Advanced Physical Chemistry (fizkemhk17em)

Anti-bonding orbitals of water

daq : 28+ 2p, — 1sp — 1sp 2b1 : 2p,

& ELTE Edtvés Lorand University, Institute of Chemistry 122



Péter G. Szalay Advanced Physical Chemistry (fizkemhk17em)

Localized orbitals of water

231 ]-bl

aaaaaaaaaaaaaaaaaa

s

2a; — 1by 2a1+1b;

In this procedure we obtain two bonding orbitals corresponding to
chemical intuition.
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Péter G. Szalay Advanced Physical Chemistry (fizkemhk17em)

Localized orbitals of water

331 ].bg

“““““““““““““““““

In this procedure we obtain two non-bonding pairs corresponding to
chemical intuition.
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Electronic structure of
transition metal complexes
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Electronic structure of transition metal complexes

System:

e ,transition metal”: atom or positively charged ion
— open shell, can take additional electrons

e ,ligands”: negative ion, or strong dipole, usually closed shell
— donate electrons (non-bonding pair, m-electrons)

Two theories:

e Cristal field theory: only symmetry

e Ligand field theory: simple MO theory
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Electronic structure of transition metal complexes

Questions to answer:

e why are they stable?
e why is the typical color?

e why do they have typical ESR spectrum?
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Cristal field theory (Bethe, 1929)

Basic principle:

e the ligands (bound by electrostatic interaction) perturb the electronic
structure of the central atom (ion)

e electrons of the ligands are absolutely not considered

Denomination comes from the theory of crystals where the field of neighbor-
ing ions has similar effect on the electronic structure of an ion considered.

atom complex
pointgroup O;f lower symmetry

orbitals | degenerate d | (partial) break off of the degeneracy

The theory is purely based on symmetry!!
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o

Pointgroup: Oy, 40
AL

Lower symmetry, the five d functions form a reducible representation:

I'(5 functions) = Ts, & E,

Tog : d,2, d$2_y2 Ey:dyy,dyy,dy

129



Character table of pointgroup O;

e

O, | I 8C, 6C; 6C, 3C,=(C® i 6S, 85 3w, 60y

Ay r 1 1 1 1 1 1 1 | X2+ yt+ 2t

Ay -1 - 1 =i i -1 ,

E, 2 ~1 2 2 1 0 (222 —%" ="
i xT——l— 3)

Ty 3 0-1 1 -1 3 0 -1 —1|(R,R,R)

IEE 3 0 1 -1 ~1 3 — 0 -1 1 (xz, yz, xy)

Ay, [ % 1 1 Im =1 —1 -1 =I1"#=]

Ay, 1 1 =1 ~1 L =1 ~1 =1 1

E, 21 0 0 2 2 ] =& 0

By 3 0 -1 i -1 -3 -1 0 I 11 (% v 2

T,, 3 0 1 -1 ~1 =3 D 1 -

130



Péter G. Szalay Advanced Physical Chemistry (fizkemhk17em)

o
4,0
x
A e y
dry .
Tz d
b 4 1} 2 ”
¥y €— ’
dza- v ds
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Ti“T(H,0)g

Energy levels:
/a2 g €9

I55")<‘|.r her dyz tzg
Octahedral

Degree of splitting:
e The theory does not say a word about this

e However: 6- A, =4-A., i.e. the average energy does not change!
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Ligand field theory

Basic principle: MO theory

e the orbitals of the central atom interact with the orbitals of the ligands
— bonding and anti-bonding orbitals are formed

e symmetry is again important: which orbitals do mix?
Basis:
e atom (ion): 3d, 4s, 4p orbitals

e ligands (closed shell): s-type orbital per ligand (,,superminimal basis")
(sometimes eventually also 7 orbitals)

Symmetrized basis:

according to the pointgroup of the complex, we split it into irreducible
representations.




Character table of pointgroup O;

e

O, | I 8C, 6C; 6C, 3C,=(C® i 6S, 85 3w, 60y

Ay r 1 1 1 1 1 1 1 | X2+ yt+ 2t

Ay -1 - 1 =i i -1 ,

E, 2 ~1 2 2 1 0 (222 —%" ="
i xT——l— 3)

Ty 3 0-1 1 -1 3 0 -1 —1|(R,R,R)

IEE 3 0 1 -1 ~1 3 — 0 -1 1 (xz, yz, xy)

Ay, [ % 1 1 Im =1 —1 -1 =I1"#=]

Ay, 1 1 =1 ~1 L =1 ~1 =1 1

E, 21 0 0 2 2 ] =& 0

By 3 0 -1 i -1 -3 -1 0 I 11 (% v 2

T,, 3 0 1 -1 ~1 =3 D 1 -
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Octahedral complex (Oy)

Basis:

e atom (ion): 3d, 4s, 4p orbitals —
['(3d) =T, ® E,

F(4S) — Alg
['(4p) = Ty
e ligand:

I'(A1,...06) = A1 B E,; ® Ty,
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Ti*T(H20)s — orbitals of the waters

~
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Ti*T(H>0)s — MO theory

Fem - JLompley Lendim

4p (tm.l

s ()

3d (ﬁqﬁ)
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Ti*T(H>0)s — MO theory

Fem ; &53 ?E!S%‘, Ligandum
/'8

/
/

4p (t.u)\ /

,——-4—45 (agq) \\

3d (&)
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Péter G. Szalay

Advanced Physical Chemistry (fizkemhk17em)
Ti°T(H20)s — MO theory

Fem . &Eff?‘?lff) Ligandum

\
i

ELTE Eotvos Lordnd University, Institute of Chemistry
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Péter G. Szalay Advanced Physical Chemistry (fizkemhk17em)

Ti*T(H>0)s — MO theory

Fem y &ggfze‘l‘eg() Ligandum

ELTE Eotvos Lordnd University, Institute of Chemistry 140



Péter G. Szalay

Advanced Physical Chemistry (fizkemhk17em)
Ti°T(H20)s — MO theory

Fim  Yorgley
1l

Ligandum
AN
,// ’ a1 ’ “\“‘
4o(te) /7 \\
4s (343)/ \ Ll
\\‘\ \\
‘u\‘ “‘\ i\
\ eg \‘\\
/ A E‘k 2
ddtne) & B9\ 1 gl
: "
%
=t

ELTE Eotvos Lordnd University, Institute of Chemistry
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Character table of pointgroup T4

T, I 8C, 3C, 6S, 6o

A, 1 i i 1 1 x* Lyt 22

A, Il |

E 2 =~ 2 (22°=x" -y
x*=y%)

T, 3 i 1 =1 (R, =, 8,

T, 3 -1 -1 1 (x, », 2) (xy, xz, yz)
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Tetrahedral complex — MO theory

Few, Kompley ~ Ligandwm

(tatre edens

EY

4p (&) /——\
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Methods
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The Independent Particle Approximation (IPA)

Hartree-method: Approximation of the wave function in a product form

:If(’l”l, T2y «ouy ’I”n)/ = ?1(7“1) . qbg(’)"g)... : qﬁn(rn)J
wave Pt?nction product of\srpin orbitals
spinorbital:
©i(1) = @i(Ti, Yi, zi, 00) = u(xi, Yi, 2i) (o)
or = u(x,yi,zi)B(0i)
spatial‘rorbital




The Independent Particle Approximation (IPA)

Hartree-method: Approximation of the wave function in a product form

EIJ(’I”l, T2y «ouy ’I”n)/ — ?1(7“1) . qbg(’)"z)... . qbn(’)"n)J
wave Plfnction e

product of spin orbitals

In this case the Schrodinger equation reduces to one-electron equations:

HU =E¥ = hi(1)pi(1) =e101(1)
32(2)902(@ = £2¢p2(2)

Bn(”)@n(”) — 5n@n(n)

One n-electron equation = system of n one-electron equations

Z A

;A

_|_ Veff

A A 1
hi — hiff:—EAi—

where fof is the interaction of electron 7 with all other electrons.
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Slater-determinant

According to the Pauli principle, the wave function of the electrons is
anti-symmetric with respect to the interchange of two electrons:

Po¥(1,2,...,n) = —U(1,2,...,n)

To fullfil anti-symmetry, instead of product wave function we have to use
determinant (Slater determinant):

p1(1)  @2(1) - pp(1)
W(1,2,..,n) = % AR 2 e
p1(n) p2(n) -+ pn(n)

— \/% (p1(1) - 92(2) - oo - op(n) — 1(2) - p2(1) - ... - @p(n) + ...)
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Expectation value of the energy with determinant wave

function

Split up the Hamiltonian into zero-, one- and two-electron parts:

S N

7

Z h(i ﬁ]z ﬁlo

The expression for the energy (¥ stands for a determinant):

E = <\IJ‘H‘\IJ> = <\P'Zh fo>+<x1'J Zi \If>+H0

i>j |4
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Expectation value of the energy with determinant wave

function
‘If> + Hy

B = (v|i|v) - <\p‘ Sk \p> " <\p

One can derive that
Z sz + Z 1] ’L] + HO

1>

=

i<j Tij

o Hii = [ ¢i|h|¢; dv;
— one-electron contribution of electron ¢ including the kinetic energy and
the attraction to the nuclei;

o Jij= [ [ di(1)d;(2);50i(1)d;(2) dvr dvy
— Coulomb mtegral representing the electron-electron interaction;
o K= [ [ (D@L 10;(1)6i(2) dor dus

— exchange mtegral consequence of the anti-symmetry.
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The Hartree-Fock method

Wave function: determinant:

e1(1)  @2(l) -+ (1)
U(1,2,..,n) = % 9015(2) 9025(2) soni(2)
pi(n) @2(n) -+ @n(n)

We look for the , the best’ determinant!

e Since the determinant consist of orbitals, we have to obtain those orbitals
which result in , the best’ determinant.

What is , the best’ 7

e According to the variation principle, the best determinant gives the lowest

energy.
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The Hartree-Fock method

Expression of the energy:

X (Y KU) ’

1>7

which is the functional of the orbitals ({¢;,i = 1,...,n}). Therefore we
have to look for the minimum of this functional.

Required condition: orbitals are orthonormal:
<¢i‘¢j> =85 =05 Vi,57 — <\If]\I/> =1

Therefore the functional to be varied is (¢'s are Lagrange-multiplicators):

G = FE— ZZ&U ii — 0ij)
) 1) 1)
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The Hartree-Fock method

(7 functional has extremum for those orbitals which fulfill:

e S0 (1K) | o) = e
i J J

By defining the operator:
J
we arrive at the following equation:
fgbi:é‘?;gbi 1= 1,...,n

This is the so called Hartree-Fock equation.

¢;) i=1,..

The orbitals satisfying the Hartree-Fock-equation are called canonical orbi-

tals.
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The Hartree-Fock-Roothaan method

Above we have derived the HF equations which, as solution to them, result
in orbitals (one-electron wave functions):

A

f¢zzgz¢z 1= 1,,n

Further approximation: look for the orbitals as the linear combination of
atomic basis function (LCAO-MO approximation):

i = Z CuiXa

with . standing for the atomic orbitals. Inserting this into the HF
equations:

fz CaiXa — & Z CaiXa
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The Hartree-Fock-Roothaan method
fzcaiXa — SizcaiXa /<Xb’

anz’<Xb Xa> = 5iZCai<Xb Xa>

~N"

f

Fpa Sha

EQZ = 5@§Qz
or by gathering all vectors C; into a matrix:

FC =

[

2

This is a matrix eigenvalue equation (Hartree-Fock-Roothaan equation).
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Interpretation of the results of the Hartree-Fock method

The orbitals (¢;) are obtained from the Hartree-Fock equations:

foi=ci o

In praxis, the orbitals are linear combination of atomic orbitals:
Qbi — Z CaiXa
a

The wave function of the system should be built from the orbitals:

1
U — ﬁdet(@, © a¢n)
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Interpretation of the results of the Hartree-Fock method

The density matrix

According to the quantum mechanics, instead of the wave function, it
is the probability density, which bears physical meaning

\IJ*(£17£27 t 7rn)\P(£17£27 T ,En)d’UldeQ Tt d/Un

The probability of finding an electron at point r (electron density):

p(f) — n//"'/\Ij*(£17£27'"7£n)\11(£17£27”'7£n)dv2dv3"'dvn

In front of the integral the multiplier n is used to add up the contribution
of all undistinguishable electrons.




Interpretation of the Hartree-Fock results

In case of determinant wave function, the electron density can be given as
the sum of the density of the individual electrons (c.f. Independent Particle
Approximation):

p(r) = Z ¢i(r)i(r)
_ Z Z CaiXa(T Z Chixp(r
— S: S: S: Caz'Cbz' Xa (E)Xb(i)
a b _1 _

-~

Pab

In the second row of the above equation, the orbitals have been expanded on
the atomic orbitals, in the last, the density matrix£ has been introduced.

156



Interpretation of the Hartree-Fock results

Population analysis according to Mulliken

From the above formula it is clear that by integrating the electron
density over the whole space, we obtain the number of electrons:

n = /p(f)dv = Z Z Py / Xa(T) X0 (1) dv
— Z Z Pabsab
a b

According to the last equation, the electron density can be distributed
according to contribution by the individual basis functions:

o P,.S.. = P, gives the charge associated with the basis function y,

o PS4, gives the charge associated with the overlap x.xs
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Interpretation of the Hartree-Fock results

From this contributions one can obtain:

® > vcaPuaSaa = D 4ec 4 Paa, which is the charge on atom A

° ZaeA ZbeB P.»Sap, which gives the charge associated with the overlap
of atoms A and B (NOT bond-order!!)

Finally, the total (Mulliken) charge on atom A can be obtained if we
add all contributions associated with atom A:

Z Z PabSab — Z(£ é)aa

acA b acA
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Interpretation of the Hartree-Fock results

Orbital energy, total energy

The eigenvalue of the Fock-operator appearing in the Hartree-Fock
equation (&;) is the orbital energy:

J?

e = (6i|floi) = (0

h+ Z(jg — K)|¢i ) = Hii + Z(Jz'j — Kij)
J J
The sum of the orbital energies of all occupied orbitals is not equal to the total energy:
E # Z&‘@' = ZHii+ ZZ(JU — Kij)
i i i g
1 1
E = ZHMWLQZZ(JM —Kj) =) &~ 522(%‘ — Kij)
i i g i i g

Thus one has to subtract the electron-electron interaction since it appears twice in the

sum of the orbital energies.
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Interpretation of Hartree-Fock results

lonization energy, Koopmans' theorem

Consider a closed shell system (M), and remove an electron from it
(M™). We assume that the orbitals do not change in this process:

Ey = 2H11 +2Hoo +4J12 — 2K + J11 + Joo
Ey+ = 2Hp1 + Hoo+2J120 — Ko+ J11
AE = FEy+—Ey=—Hoo—2J10+ Ko — Jag = —¢2
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Interpretation of Hartree-Fock results

The ionization energy is therefore equals the negative of the energy of the
orbitals from where the electron has been removed (Koopmans’ theorem):

This approximation works since the errors of the two approximations cancel
each other:

e we use determinental wave function (the so called electron correlation is
not considered);

e orbitals of the ions are not optimized (no orbital relaxation).
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Interpretation of Hartree-Fock results

The ionization energy is therefore equals the negative of the energy of the
orbitals from where the electron has been removed (Koopmans’ theorem):

This approximation works since the errors of the two approximations cancel
each other:

e we use determinental wave function (the so called electron correlation is
not considered);

e orbitals of the ions are not optimized (no orbital relaxation).

Similarly, one could calculate electron affinity:

this is, however, a much worse approximation.
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Density Functional Theory
(DFT)




Wave function vs. density

The wave function is a 4N dimensional function which determines all properties of the
system:

U = WY(r,7,....,7n) Ti= (rq, 0;)
E = (V|H|¥) ie. E = E[Y]
On the other hand, the density is a three dimensional function:
p(r1) = N - f f f W (11, T2, ..., TN)* W (11,72, ..., TN) do1dTs - - - dTN,
which gives the probability of finding a single electron at a given point.

The density can be calculated from the wave function:
v = p(r)
Intuitively, one would assume that it also gives all properties of the systems:

? ?
p— E ie. FE = E|[p]
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Splitting up of the Hamiltonian

Z A+Z——ZZ

PGS
T Vee V(r)

e T kinetic energy, not system specific;
e V.. electron-electron repulsion, defined by NV, not system specific;

e V/(r) depends only on the nuclei, called the , external potential”.

The first two terms is the same for all system, while the , external potential”
defines which molecule we consider (where are the nuclei, what is their
charge).
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First theorem of Hohenberg-Kohn (HK1)

V(r),)N — H
1 Schrodinger equation
p(r) <« E U

The energy of the system, its wave function and therefore also the density
is determined by the , external potential”, i.e. by the molecule.

HK1:

A V(r) ,external potential” (disregarding a trivial constant term) is
defined completely by the electron density.

Therefore, considering also the relations in the above figure:

V(r) < p(r)
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Energy as functional of the density

Molecule — position of the nuclei — V(r) — p(r) — energy

Therefore the energy is a functional of the density:
Elp] = T[p]+ Eece[p] + Enelp]

e T'[p| is the kinetic energy, its form is unknown

o F..lp| = J|p| + E.|p]: electron-electron interaction, summ of the Cou-

lomb (J) and the exchange (F,) contributions. The functional form is
known for (J) but not for (E.,).

e F,.|p] interaction between electron and nuclei, form is know, can be

calculated from V ([ p V dr)

T|p] and E..|p| are universal, E,.|p] system dependent.
Jpl, Enelp] are known, T'[p], E.[p] are unknown!
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Second theorem of Hohenberg-Kohn (HK2)

HK2:

The variational principle is also valid for the energy functional, i.e. the
energy is minimal with the exact electron density

This means, the best density can be obtain by minimization, provided
the form of the functional is known.

But the form of the functional is not known!

What we know is that the relations can be rationalized through the
Schrodinger equation, but we do not know whether an analytical form exists
at all (most probably it does not exists!!)

V(),N — H
) 1 Schrodinger egyenlet
p(r) <+ E U
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Kohn-Sham (KS) DFT

Construct the functional of the kinetic energy for a system with non-interacting
particles, assuming the same density as of the investigated system:

occ

1
Ts = > (pil = ;Alp:)

and occ

p(r) = > ¢i()eir)

Note the we have introduced orbitals, from now on we not just directly use the density!

Ts is not the same as T'[p] it is just an approximation:

Tlp] = Tslp] + Ec[p]

with correction E. being the ,correlation contribution” which is not known!!
Exelp] = Tlp] — Tslp] + Ezlp] = Ec[p] + Ez[p]

is the so called exchange-correlation functional, which collects all the the unknown
contributions. We have no idea how it looks like!!!
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Kohn-Sham (KS) DFT

Thus, the so called Kohn-Sham energy functional has the form:

Exslpl = Tslp] + Jp] + Enclp] + Ezclp]

Applying the variational principle (look for the , best” density which gives the lowest
energy), we arrive at one-particle equations which are similar to that of the Hartree-Fock
method and called the Kohn-Sham equation:

BKS PYi = & Pi
N 1 ~ N N
hKS — _§A+Vne+ej+vxc
Comparing to the Fock operator

A 1 N a N
fo= A4Vt i-K

the only difference is that the exchange (K) Is replaced by , exchange-correlation”
potential (V) .
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Kohn-Sham (KS) DFT

iLKS i = & ¥
~ 1 N A N
hKS — _§A+Vne+¢]+vxc
From the Kohn-Sham equation we get orbitals and orbital energies and

we can calculate the density from the orbitals. Using the density, all the
properties can be calculated.

Problem: if we don't know FE., we do not know V., either!!!l

The different DFT methods differ in the choice of the functional V..
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DFT functionals

There are several levels of the approximation (Jacob's ladder of DFT):

1. Assuming homogeneous electron gas — V.. can be calculated from the density;

2. Gradient-corrected (GGA - General Gradient Approximation) functionals:
e functional V. depends not only on the density but also on its gradients
® expansion according to these quantities
e empirical parameters < fitted on chemical systems

3. Hybrid methods

e exchange part of the potential from Hartree-Fock (,,exact exchange™)
e new parameters < fitted on chemical properties

4. Correction for long distance interactions INCLUDING
HEAVEN OF CHEMICAL ACCURACY DISPERSION
T CORRECTIONS
1 emplrlcal > E_MP2-like .
. I © generalizedrandom phase (B2PLYP,...)
e from wave function methods M
P E, Hartree hyperGGA (B3LYF,M06-2X,...)
L
I | tor vplr) metaGGA (TPSS,MO06-L,...)
C
| Vpl(r) GGA (BLYPPBE,...)
.
Y plr) LDA (SVWN})
v
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DFT functionals

Approximation exchange correlation
Vi Ve
1) homogeneous electron gas LDA VWN
2) Gradient-corrected (GGA) PW86 LYP
B33 PWO1
PBE PBE
3) Hybrid methods B3 B3
PBEO
4) Correction for long distance interactions DFT-D
Double-hybrid DFT
MO06
MO6-2X
MO6-L
MO6-HF

The name of the functional is the combination of the names of the exchange and
correlation part (e.g. B3-LYP). Abbreviations on the following page
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DFT functionals

Abbreviations:
LDA — Local Density Approximation (used mostly in solid state physics)
VWN - Vosko, Wilk, Nusair correlation functional
PW86 — Perdew an Wang functional from 1986
LYP — Lee, Young and Parr correlation functional
B88 — Becke's exchange functional from 1988
PWA90 — Perdew and Wang functional from 1991
PBE — Perdew, Burke and Erzenhof functional
B3 - Becke's hybrid functional
PBE — Perdew, Burke and Erzenhof hybrid exchange functional

DFT-D — dispersion-corrected functional (Grimme)

MO06-yy — Truhlar's (Minnesota) series of functionals
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Performance of the DFT methods (kcal/mol)*

Method Mean abs. dev. Maximum error
G2** 1.6 8.2
SVWN (LDA-VWN) 90.9 228.7
BLYP 7.1 28.4
BPWI1 7.9 32.2
B3LYP 3.1 20.1
B3PWI1 3.5 21.8

* Using atomization and ionization energy as well as electron affinity of 126 molecules.

** combination of wave function methods (best one can do, very expensive).
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Basis sets used In
computational chemistry
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The LCAO-MO approximation

Above we have discussed the approximation: molecular orbitals are
expanded on atomic bases:

Yi — ani Xa

a

This is the so called LCAO-MO (Linear Combination of Atomic Orbitals
for Molecular Orbitals) approximation, which is almost always used in
computational chemistry, both in Hartree-Fock and DFT calculations.

The quality of the basis largely determines the quality of the results.
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Form of the basis functions

According to the chemical intuition, MO's can be obtained from AQ's. Best
choice would be to use atomic orbitals obtained for the atoms within the
IPA calculation.

STO: Slater-type orbitals

Xn,l,m(rv 0, 90) ~ T leTer Yim(ev 90)

( is the parameter of the function. A few Slater functions give already a
quite good qualitative description.

Problem: calculation of the electron-electron interaction is complicated
with these functions.




Form of the basis functions

GTO: Gauss-type orbitals

_ gk —cr?
gy = Xijk = X Y = €

This form is based on Cartesian coordinates, and instead of quantum number [, the
exponent of x, y, z coordinates are used to form the necessary functions:

e s functionz =75 = k = 0;
e p function,eg. 1 =1, j = k =0;
e d function,eg. 1 =1, 53 =1, k =0.

Here also ( is the only parameter.

Advantage: product of two Gaussian functions placed in different points of space
is also a Gaussian function, therefore the electron-electron interaction can be calculated
easily!

Disadvantage: falloff is too fast, and there is no cusp — for the same quality more
Gaussian functions are needed than Slater functions.
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Form of the basis functions

CGTO: Contracted Gauss-type orbitals
Xa — Z dab gb
b

I.e. the basis functions are fixed combination of so called primitive Gaussian functions
(described on the previous slide). Coefficients d,; are additional parameters of the basis
set, they are obtained from a previous calculation. One possibility: expansion of Slater
function on the Gaussian ones (ST O — nG).
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Gaussian basis functions used in practice

Minimal basis: one function for all occupied sub-shell. For example:

H  one s-type function
C  two s, one set of p (all together five functions)

- Double zeta (DZ) basis: two functions for all occupied sub-shell. For example:
H  two s-type functions
C  four s, two sets of p (all together ten functions)
O  four s, two sets of p (all together ten functions)

- Triple zeta (TZ) basis: three functions for all occupied sub-shell.

- Polarization functions: include also functions with larger [ than that of the occupied
shells. For example, in case of DZP:

H  two s-type functions and one set of p

C'  four s, two sets of p one set of d

O  four s, two sets of p one set of d
For the description of electron correlation, polarization functions are necessary!

- Diffuse functions: include additional functions with smaller zeta exponents. These

decay slower and required to describe extended wave function (e.g. anions).
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Gaussian basis functions used in practice

- Split-valence basis

Chemistry takes place in the valence shell, therefore it is not necessary to use too
many functions for the inner shells. Leave out the functions describing the core from the
optimization procedure, use them with a fixed coefficient. For example, use contraction
like:

4, — 21 G

N’ =% N’
inner shell valence shell Gaussian
four GTO 2+1 GTO

one CGTO 2 db CGTO

For example, the 3-21G basis:

subshell  primitive Gaussians contracted Gaussians
H 1s 3 Gaussians —  two functions
1ls 3 Gaussians —  one function
C 2 s 3 Gaussians —  two functions
2p 3x3 Gaussians —  2x3 functions
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Gaussian basis functions used in practice

- Split-valence basis (cont.)

Polarization functions

6 — 31G™ < polarization function on second row atoms
6 — 31G™ < polarization function als on H atom

Diffuse functions (small exponents, slow falloff)

6 — 31G+ < diffuse function on second row atoms
6 — 31G++ <« diffuse function also on H atom

These are important for long range interactions, diffuse electron distributions (e.g.

anions).
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Gaussian basis functions used in practice

- ,,Correlation Consistent” basis: cc-pVXZ

cc: correlation consistent — for higher level (correlation) calculations
p: polarized — includes polarization function

V: valence — ,,split valence” type

XZ: DZ (double zeta), TZ (triple zeta), QZ, quadruple zeta, etc.

For example, cc-pVTZ is , triple zeta” type basis (polarization functions in red):
H  three s type functions, two stes of p, one set ofd
C  one + three s type functions, three sets of p, two stes of d, one set of f
O  one + three s type functions, three sets of p, two stes of d, one set of f

Further variants:

aug-cc-pVXZ: includes also diffuse functions

cc-pCVXZ: includes also ,,core” functions
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Wave function methods:
inclusion of electron
correlation
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Reminder: The Hartree—Fock method

Wave function: a Slater-determinant corresponding to a configuration:
%
%

A

Uprp = A(p1(1) p2(2) ¢3(3)...on(n))

antisymmetrizer - Pauli principle
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Reminder: The Hartree—Fock method

Wave function: a Slater-determinant corresponding to a configuration:
%
%

A

Uprp = A(p1(1) p2(2) ¢3(3)...on(n))

antisymmetrizer - Pauli principle

Molecular orbitals (¢;) obtained from:

A

Joi = €y
Vi = ZCmXa Xo : basis functions

(87
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Reiminder: The Hartree—Fock method

Advantages:

Independent particle approximation — concept of orbitals

not very expensive

Problems:

do not describe the proper interaction of electrons
— lack of , electron correlation”

accuracy is limited
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Going beyond Hartree-Fock

Density Functional Theory - DFT

Configuration Interaction (Cl) - expand the wave function on several

determinants
Perturbation Theory (PT) - use HF as start

Coupled Cluster (CC) - exponential expansion of the wave function
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The Configuration Interaction (Cl) method

Wave function: linear combination of Slater-determinants

PR

singles

—
-
—

doubles

AT

triples
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The Configuration Interaction (Cl) method

Wave function: linear combination of Slater-determinants

C I . I
b -
a — Tt T
I T e—
i e e e
k—44— e e
singles doubles triples

Vor=coWUpp+ Yy 08+ > o+ Y a4

ia 1>7 a>b 1>7>k a>b>c
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The Configuration Interaction (Cl) method

Wave function: linear combination of Slater-determinants
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singles doubles triples

Vor=coWUpp+ Yy 08+ > o+ Y a4

ia 1>7 a>b 1>7>k a>b>c

1+ CIS
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The Configuration Interaction (Cl) method

Wave function: linear combination of Slater-determinants

C I . I
b -
a — Tt T
I T e—
i e e e
k—44— e e
singles doubles triples

Vor=coWUpp+ Yy 08+ > o+ Y a4

ia 1>7 a>b 1>7>k a>b>c

1+ CISD
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The Configuration Interaction (Cl) method

Wave function: linear combination of Slater-determinants

C I . I
b -
a — Tt T
I T e—
i e e e
k—44— e e
singles doubles triples

Vor=coWUpp+ Yy 08+ > o+ Y a4

ia 1>7 a>b 1>7>k a>b>c

+ CISDT
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The Configuration Interaction (Cl) method

Wave function: linear combination of Slater-determinants

C I . I
b -
a — Tt T
I T e—
i e e e
k—44— e e
singles doubles triples

Vor=coWUpp+ Yy 08+ > o+ Y a4

ia 1>7 a>b 1>7>k a>b>c

Full Cl
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The CI equations

A general way of writing the Cl wave function as linear combination of
determinants:

Vor = Zcpcbp

p

How can we obtain the coefficients? Variationally

This leads to a matrix eigenvalue equation:

fiss

c = FEc

where the matrix elements are:

H?“p — <(I)T|H|(I)p>

The elements of the eigenvector ¢ define the expansion in the first equation.
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Cl expansion space: Truncated ClI

In practice: CISD - only single and double excitations
b, ab
Ocisp = co®ur + Y R+ > o
ia 1>7 a>b
e doubles, because these give the largest contribution to energy

e singles also, because needed for one electron properties (not expensive
anyway)
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Cl expansion space: Truncated ClI

In practice: CISD - only single and double excitations
b, ab
Ocisp = co®ur + Y R+ > o
ia 1>7 a>b
e doubles, because these give the largest contribution to energy

e singles also, because needed for one electron properties (not expensive
anyway)

This approximation is valid if: ¢y ~ 1,

i.e. the wave function is dominated by the reference (HF) determinant
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Cl expansion space: Truncated ClI
Co ~~ 1

This is usually satisfied:

e ground electronic states at equilibrium geometry

Very often this is not satisfied:

e low lying virtual orbital
e dissociation, long bonds
e excited states

e ctc.
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Main problem with CI

Energy does not scale properly with the size of the system:

® not size-consistent

® not size-extensive
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Size-consistency

Consider two subsystems at infinite separation. We have two choices:

e treat the two systems separately;

e consider only a super-system.

Provided that there is no interaction between the two systems, the two
treatments should give the same result, a basic physical requirement.
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Size-consistency

Let us use the CID wave function to describe this system!
For the super — system we have : Vorp=Pygr+ ®p

® p is the sum of all double excitations out of @ (including coefficients).
For the subsystems we can write:

AWorp = Abpp+- 0p

BUoip = Boyp+° op

The product of these two wave functions gives the other choice for the wave
function of the super-system:

Weorp PYerp

= A0up POpp +2 Opp POp +° Oyp “0p+* @p POp

= Oup+Pp+2dp Bdp

ABYorp
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Size-consistency

This simple model enables us to identify the origin of the size-consistency
error:

The difference of the two super-system wave functions:
A B Az, B
Veorp “VYerp —VYerp = “®p “Pp

I.e. simultaneous double excitations on the subsystems are missing from the
Cl wave function.

This error is present also if there is an interaction between A and B, but
we cannot quantify it by two calculations

4

lack of size-extensivity




The Coupled-Cluster method

Wave function:
T
Voo = e Pyp

where T, is an excitation operator:

A

T = Ty +Th4 ..

T produces excited determinants, as in Cl:

A 1
_ abc.. xabc..
TPy = | Z ik, Pijk..

" abe...ijk...
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The Coupled-Cluster method

Expanding the exponential

A A

Voo = ef(I)HF:<1—|—T—|—§T2—I—...)(I)HF

which includes higher excitations, i.e. in case of Coupled-Cluster wave

function higher excitations are included without increasing the number of
parameters.

For example, restricting T to singles and doubles (T = Tl + Tg, CCSD
method):

.. A ) 1.
Vocsp = eV 20up=0+T1+Th+ ...+ §T22 +.)PHr

i.e. the quadruply excited term %TQZ appears in the expansion, which plays
an important role for accuracy (simultaneous double excitation).




The Coupled-Cluster method

Truncated versions:

e CCSD (T =T, + 1))

e CCSD(T) (T =Ty + 15 + approximate T%)
o CCSDT (T'=T) +Ts + T3)

e CCSDTQ (T =Ty +T» + T3 + T2)

Widely used and very accurate for ground states!

CCSD(T) is considered as the golden standard of quantum chemistry
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PERTURBATION THEORY

The starting point of Rayleigh-Schrodinger Perturbation Theory is the
partitioning of the Hamiltonian:

with f[o being the zeroth order part of the Hamiltonian, V is the perturba-
tion. We need to know the solution for Hy, i.e.

HoUy = Ey¥,

with Wy and Ej being the zeroth order wave function and energy, respecti-
vely.
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PERTURBATION THEORY

In quantum chemistry we often use the so called Mgller-Plesset (MP)
partitioning:

Hy = Z f(0)
i
I.e. sum of the one-electron Fock-operators, since in this case:

¥y = Determinant from the Hartree — Fock calculation

Eo Z €

1st order: Hartree-Fock method

2nd order: MP2 or MBPT(2) method
3rd order: MP3 of MBPT(3) method

etc.




PERTURBATION THEORY

MP2: cheap way to include electron correlation
MP3: usually not any better than MP2

MP4: often very good but expensive

Main problems:

e series may not converge

e gets very expensive
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