Advanced Physical Chemistry (fizkemhk17em) Electronic Structure

Péter G. Szalay
ELTE Eötvös Loránd University
Institute of Chemsitry
szalay@chem.elte.hu

Goal of this part of the course

- Learn the English terms used in quantum chemistry
 - "Reminder" section
- Talk about topics left out the BSc course
 - "Angular momentum" and "Group Theory" sections
- Repetion with this new knowledge
 - "Atomic structure" and "Molecular structure" sections
- Learn the basic knowledge to perform quantum chemical calculations
 - "Methods" section

Syllabus

See at https://pgszalay.elte.hu/teaching

- Last years's document: Advanced Physical Chemistry (Electronic Structure Part 2018)
- This year's document: will apeare here in parts

Content of this part

- **Angular momentum**: operators, eigenvalues, eigenfunctions; magnetic moments; spin moments; application to the hydrogen atom.
- **Electronic structure of atoms**: orbitals, orbital energies, electronic configuration; angular momentum operators for many electron system; representation of atomic states and the corresponding notation; Hund's rule, spin-orbit interaction, atoms in magnetic field.
- Molecular symmetry, group theory: symmetry operations, point groups, representations and the character table, direct-product representation; application in electronic structure and spectroscopy.
- Chemical bond: quantum mechanical definition of chemical bond; approximations: IEA, MO theories, LCAO-MO, Valence Bond theory; diatomic molecules, electronic structure of transition-metal complexes; quantum chemistry of periodic systems.
- Computational Chemistry: determinant wave function, energy expression with determinant wave function, short derivation of the Hartree-Fock (HF) method, Hartree-Fock-Roothaan method, interpretation of the HF results (orbitals, density, population analysis, Koopmans theorem), basic elements of the Density Functional Theory (DFT), Hohenberg-Kohn theorems, Kohn-Sham DFT, functionals, hybrid methods; atomic basis sets.

Reminder

In quantum mechanics physical quantities are represented by operators.

Basic operators are the coordinate \hat{x} and momentum \hat{p} :

$$\hat{x} = x$$

$$\hat{p} = -i\hbar \frac{\partial}{\partial x}$$

All other operators can be derived by replacing coordinate and momentum in the classical formula by the operators.

Example: kinetic energy

Reminder

Measurement

According to quantum mechanics, the result of a measurement can only be the eigenvalue of the corresponding operator.

$$\hat{A}\phi_i(x) = a_i\phi_i$$

where a_i is the *i*th eigenvalue, ϕ_i is corresponding eigenfunction.

Reminder

Two operators commute, if

$$\hat{A} \cdot \hat{B} - \hat{B} \cdot \hat{A} = 0$$
$$[\hat{A}, \hat{B}] = 0$$

i.e. their commutator is vanishing. In this case the corresponding two physical quantities can be measured simultaneously.

Otherwise, the two physical quantities can be measured only with some uncertainty:

$$[\hat{x}, \hat{p}_x] = i\hbar \neq 0$$

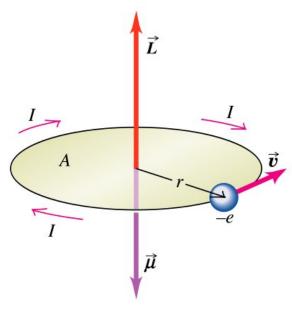
$$\downarrow \qquad \qquad \downarrow$$

$$\Delta x \cdot \Delta p_x \geq \frac{1}{2}\hbar$$

This is the famous Heisenberg uncertainty principle.

Classical angular momentum:

$$\begin{array}{rcl}
\underline{l} & = & \underline{r} \times \underline{p} \\
l_x & = & yp_z - zp_y \\
l_y & = & zp_x - xp_z \\
l_z & = & xp_y - yp_x.
\end{array}$$



Classical angular momentum:

$$\begin{array}{rcl}
\underline{l} & = & \underline{r} \times \underline{p} \\
l_x & = & yp_z - zp_y \\
l_y & = & zp_x - xp_z \\
l_z & = & xp_y - yp_x.
\end{array}$$

 $l_z=xp_y-yp_x.$ Thus, with the definition of \hat{x} , and \hat{p} one can obtain the corresponding operators for the angular momentum:

$$\hat{l}_{x} = \hat{y}\hat{p}_{z} - \hat{z}\hat{p}_{y} = -i\hbar\left(y\frac{\partial}{\partial z} - z\frac{\partial}{\partial y}\right)$$

$$\hat{l}_{y} = \dots$$

$$\hat{l}_{z} = -i\hbar\left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right)$$

$$\hat{\underline{l}}^{2} = \hat{l}_{x}^{2} + \hat{l}_{y}^{2} + \hat{l}_{z}^{2}$$

It is easy to derive some important properties of the angular momentum operators:

$$egin{array}{lll} egin{array}{lll} egin{arra$$

This means that $\hat{\underline{l}}$ does not have any two components which can be measured at the same time. It is \hat{l}^2 (square length) and one component of $\hat{\underline{l}}$ which can be obtained simultaneously.

z component of the angular momentum:

$$\hat{l}_z = -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right)$$

Let us use a spherical coordinate system!

$$x = r \sin \theta \cos \varphi$$

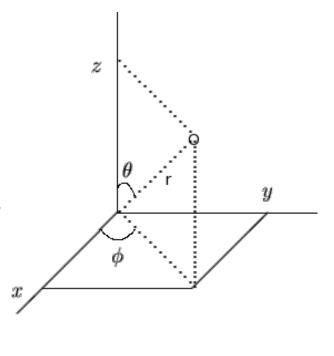
$$y = r \sin \theta \sin \varphi$$

$$z = r \cos \theta$$

$$\frac{\partial x}{\partial \varphi} = -r \sin \vartheta \sin \varphi = -y$$

$$\frac{\partial y}{\partial \varphi} = r \sin \vartheta \cos \varphi = x$$

$$\frac{\partial z}{\partial \varphi} = 0$$



$$\frac{\partial x}{\partial \varphi} = -r \sin \vartheta \sin \varphi = -y$$

$$\frac{\partial y}{\partial \varphi} = r \sin \vartheta \cos \varphi = x$$

$$\frac{\partial z}{\partial \varphi} = 0$$

First we recognize that

$$\left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right) = \frac{\partial}{\partial \varphi}$$

One can easily prove this using the "chain-rule":

$$\frac{\partial}{\partial \varphi} = \frac{\partial}{\partial x} \frac{\partial x}{\partial \varphi} + \frac{\partial}{\partial y} \frac{\partial y}{\partial \varphi} + \frac{\partial}{\partial z} \frac{\partial z}{\partial \varphi}$$

$$= -\frac{\partial}{\partial x} y + \frac{\partial}{\partial y} x + \frac{\partial}{\partial z} \cdot 0 = \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) \quad QED$$

The z component of the angular momentum operator therefore reads:

$$\hat{l}_z = -i\hbar \frac{\partial}{\partial \varphi}$$

Eigenfunctions and eigenvalues of the z component of the angular momentum:

$$l_z = m\hbar, \qquad m = 0, \pm 1, \dots$$

$$\Phi(\varphi) = \frac{1}{\sqrt{2\pi}} \cdot e^{im\varphi}, \quad m = 0, \pm 1, \dots$$

 \hat{l}^2 in spherical coordinates:

$$\hat{l}^{2} = -\hbar^{2} \left[\underbrace{\frac{1}{\sin \vartheta} \frac{\partial}{\partial \vartheta} \left(\sin \vartheta \frac{\partial}{\partial \vartheta} \right)}_{\hat{A} (\vartheta)} + \frac{1}{\sin^{2} \vartheta} \frac{\partial^{2}}{\partial \varphi^{2}} \right]$$

The eigensystem of the \hat{l}^2 operator

$$\lambda = l(l+1)\hbar^2 \qquad l \ge |m|$$

$$Y_l^m(\vartheta,\varphi) = \Theta_l^m(\cos(\vartheta)) \cdot e^{im\varphi}$$

$$l = 0, 1, 2, \dots$$

$$m = -l, ..., 0, ...l$$

Magnetic moment

If a charged particle is moving on a circle (has angular momentum), it also has magnetic moment. The magnetic moment vector $(\underline{\mu})$ is therefore proportional to the angular momentum vector, for example the z component is:

$$\hat{\mu}_z = \frac{e}{2 \, m_{el}} \hat{l}_z$$

The system having a magnetic moment will interact with the magnetic field, its energy will change due to this interaction:

$$\Delta E = B_z \cdot \frac{e}{2 m_{el}} \cdot l_z$$

where B_z is the z component of the magnetic induction, which is quantity characterizing the strength of the magnetic field.

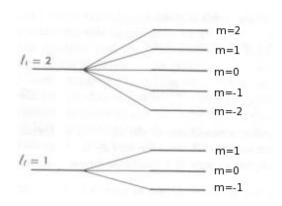
Magnetic moment

The possible values of $l_z=m\cdot\hbar$, where $m=0,\pm1,...$ Therefore

$$\Delta E = B_z \cdot \mu_B \cdot m$$

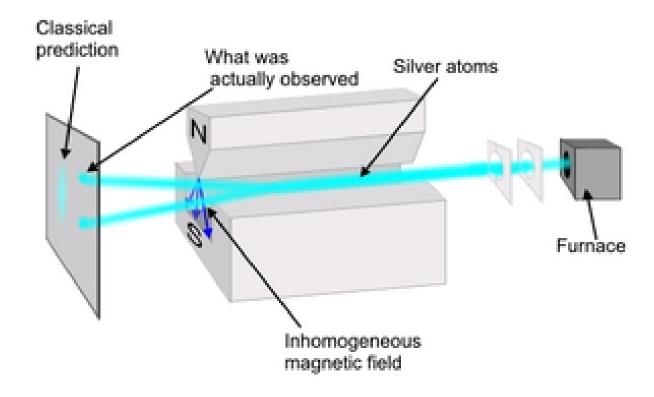
where $\mu_B = \frac{e\hbar}{2 \; m_{el}}$ is a constant called *Bohr-magneton*.

What does this mean? According to the equations above, the energy of the particle with angular momentum in magnetic field depends on the quantum number m: if m is positive, it will grow; if m is negative, it will decrease; and it is not changing for m=0. Since there are 2l+1 possible values of m, there will be 2l+1 different energy levels, the degeneracy of these levels will be lifted! This is the so called Zeeman-effekt.



The spin of the electron

Stern-Gerlach experiment:



The beam splited in to 2 beams, and not 1, 3, 5, 7, etc., as expected form the properties of the angular momentum!!

The spin of the electron

To explain this experiment

- Pauli (1925): a "fourth quantum number" is needed;
- Goudsmit and Uhlenbeck suggested the concept of spin, as the "internal angular momentum"

In mathematical form:

$$\underline{\hat{s}} = (\hat{s}_x, \hat{s}_y, \hat{s}_z)$$

The spin of the electrons

The commutation properties of this new operator are the same as of the angular momentum, since it describes similar property:

$$[\hat{s}_x, \hat{s}_y] = i\hbar \hat{s}_z$$

$$[\hat{s}^2, \hat{s}_i] = 0 \qquad i = x, y, z$$

Eigenvalues have again similar properties than in case of the angular momentum:

$$\hat{s}^2$$
 eigenvalues: $s(s+1) [\hbar^2]$

$$\hat{s}_z$$
 eigenvalues: $m_s = -s, -s+1, \dots, s$ [\hbar]

The spin of the electrons

What are the possible values of the new quantum numbers s and m_s ? This can be obtained from the Stern-Gerlach experiment: there were two beams, so that m_s can have only two values:

$$m_s = \frac{1}{2}, -\frac{1}{2}$$

Therefore

$$s = \frac{1}{2}$$

is the only proper choice!!!

Electron has a charge of -1, and a spin of $\frac{1}{2}!!!!$

The spin of the electron

There are two eigenvalues of s_z , therefore there are two eigenfunctions $\alpha(\sigma)$ and $\beta(\sigma)$ (σ is the spin coordinate):

$$\hat{s}_z \; \alpha(\sigma) = \frac{1}{2} \, \alpha(\sigma)$$

$$\hat{s}_z \beta(\sigma) = -\frac{1}{2} \beta(\sigma)$$

Pauli matrices:

$$\hat{s}_z = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$$

$$\hat{s}_x = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}$$

$$\hat{s}_x = \begin{pmatrix} 0 & -\frac{i}{2} \\ \frac{i}{2} & 0 \end{pmatrix}$$

The spin of the electron

The total wave function of the electron atom must be supplemented by the spin, thus it depends on four variables:

$$\Psi(x, y, z, \sigma) = u(x, y, z)\alpha(\sigma)$$

or $= u(x, y, z)\beta(\sigma)$

Spin-orbit interaction

There are two different types of angular momenta:

- angular momentum resulting from the motion of electrons (\hat{l}) , (orbital angular momentum);
- angular momentum originating from the spin $(\hat{\underline{s}})$ (spin momentum).

These magnetic moments can interact, causing an energy change:

$$\hat{H} \rightarrow \hat{H} + \zeta \cdot \hat{\underline{l}} \cdot \hat{\underline{s}}$$

where ζ is a constant.

Consequences:

- the Hamilton operator will not commute with \hat{l}^2 , \hat{l}_z and \hat{s}_z operators;
- energy will depend on the quantum number l.

Quantum mechanical description of the hydrogen atom

The Hamiltonian of the hydrogen atom (in atomic units): $\hat{H} = -\frac{1}{2}\triangle - \frac{1}{r}$

$$\hat{H} = -\frac{1}{2}\triangle - \frac{1}{r}$$

The Hamiltonian in spherical coordinates:

$$\hat{H} = -\frac{1}{2} \left[\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \left(-\hat{l}^2 \right) \right] - \frac{1}{r}$$

Relation of the Hamiltonian with angular momentum:

$$\left[\hat{H}, \hat{l}_z\right] = 0$$
 and $\left[\hat{H}, \hat{l}^2\right] = 0$

Since \hat{l}_z and \hat{l}^2 depend only on the variables arphi and artheta, the wave function can be written as:

$$\Psi\left(r,\vartheta,\varphi\right) = R\left(r\right) Y_{l}^{m}\left(\vartheta,\varphi\right)$$

Quantum mechanical description of the hydrogen atom

Solution of the Schrödinger equation for the hydrogen atom

Eigenfunctions:

$$\Psi\left(r,\vartheta,\varphi\right) = R_{nl}\left(r\right) Y_{l}^{m}\left(\vartheta,\varphi\right) = R_{nl}\left(r\right) \Theta_{l}^{m}\left(\vartheta\right) e^{-im\varphi}$$

Eigenvalues (hartree units):

$$E_n = -\frac{1}{2n^2} \left(E_h \right)$$

Quantum numbers:

$$n = 1, 2, 3, ...$$
 $l = 0, 1, 2, ..., n - 1$
 $m = -l, -l + 1, ..., 0, l - 1, l$

Quantum mechanical description of the hydrogen atom

Eigenfunctions of the hydrogen molecule (Ψ_{nlm}) :

$$\begin{array}{lll}
1s & \Psi_{100} = \frac{1}{\sqrt{\pi}}e^{-r} \\
2s & \Psi_{200} = \frac{1}{4\sqrt{2\pi}}(2-r)e^{-r/2} \\
2p_0 & \Psi_{210} = \frac{1}{4\sqrt{2\pi}}re^{-r/2}\cos(\vartheta) \\
2p_{\pm 1} & \Psi_{21\pm 1} = \frac{1}{8\sqrt{\pi}}re^{-r/2}\sin(\vartheta)e^{\pm i\varphi} \\
3s & \Psi_{300} = \frac{2}{81\sqrt{3\pi}}(27-18r+2r^2)e^{-r/3} \\
3p_0 & \Psi_{310} = \frac{\sqrt{2}}{81\sqrt{\pi}}r(6-r)e^{-r/3}\cos(\vartheta) \\
3p_{\pm 1} & \Psi_{31\pm 1} = \frac{1}{81\sqrt{\pi}}r(6-r)e^{-r/3}\sin(\vartheta)e^{\pm i\varphi} \\
3d_0 & \Psi_{320} = \frac{1}{81\sqrt{6\pi}}r^2e^{-r/3}(3\cos^2(\vartheta)-1) \\
3d_{\pm 1} & \Psi_{32\pm 1} = \frac{1}{81\sqrt{\pi}}r^2e^{-r/3}\sin(\vartheta)\cos(\vartheta)e^{\pm i\varphi} \\
3d_{\pm 2} & \Psi_{32\pm 2} = \frac{1}{162\sqrt{\pi}}r^2e^{-r/3}\sin^2(\vartheta)e^{\pm 2i\varphi}
\end{array}$$

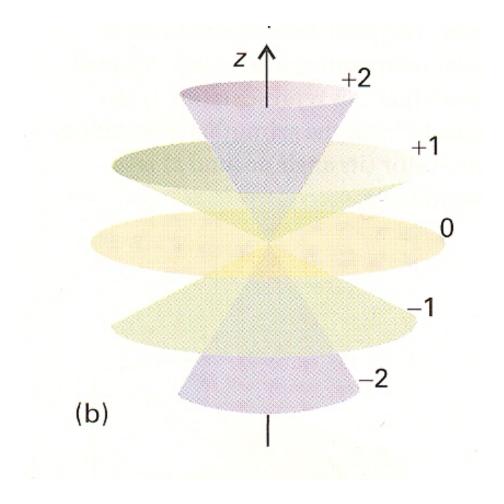
Angular momentum of the H atom

The angular momentum values belonging to the orbitals of the H atom:

orbital	n		m	$\lambda = l(l+1)[\hbar^2]$	$l_z = m[\hbar]$
1s	1	0	0	0	0
2s	2	0	0	0	0
$2p_0$	2	1	0	2	0
$2p_1$	2	1	1	2	1
$2p_{-1}$	2	1	-1	2	-1
3s	3	0	0	0	0
$3p_0$	3	1	0	2	0
$3p_1$	3	1	1	2	1
$3p_{-1}$	3	1	-1	2	-1
$3d_0$	3	2	0	6	0
$3d_1$	3	2	1	6	1
$3d_{-1}$	3	2	-1	6	-1
$3d_2$	3	2	2	6	2
$_{\rm 3d}_{\rm -2}$	3	2	-2	6	-2

Angular momentum of the H atom

Angular momentum vectors of the 3d orbitals:



The states of the hydrogen atom including spin

Wave function:

$$\Psi_{n,l,m,m_s}$$

Quantum numbers:

$$n = 1, 2, ...$$
 $l = 0, 1, ..., n - 1$
 $m = -l, -l + 1, ..., l$
 $m_s = -\frac{1}{2}, \frac{1}{2}$

Energy depends still only on quantum number n ($2n^2$ -fold degeneracy):

$$E_n = -\frac{1}{2 n^2} \left[E_h \right]$$