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Goal of this part of the course

Learn the English terms used in quantum chemistry

— . Reminder’ section

Talk about topics left out the BSc course

— , Angular momentum” and ,,Group Theory' sections

Repetion with this new knowledge

—  Atomic structure’ and , Molecular structure’ sections

Learn the basic knowledge to perform quantum chemical calcula-
tions

— . Methods" section




Syllabus

See at https://pgszalay.elte.hu/teaching

e Last years's document: Advanced Physical Chemistry (Electronic Struc-
ture Part 2018)

e This year's document: will apeare here in parts
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Content of this part

Angular momentum: operators, eigenvalues, eigenfunctions; magnetic moments; spin
moments; application to the hydrogen atom.

Electronic structure of atoms: orbitals, orbital energies, electronic configuration;
angular momentum operators for many electron system; representation of atomic states

and the corresponding notation; Hund's rule, spin-orbit interaction, atoms in magnetic
field.

Molecular symmetry, group theory: symmetry operations, point groups, represen-
tations and the character table, direct-product representation; application in electronic
structure and spectroscopy.

Chemical bond: quantum mechanical definition of chemical bond; approximations:
IEA, MO theories, LCAO-MO, Valence Bond theory; diatomic molecules, electronic
structure of transition-metal complexes; quantum chemistry of periodic systems.

Computational Chemistry: determinant wave function, energy expression with de-
terminant wave function, short derivation of the Hartree-Fock (HF) method, Hartree-
Fock-Roothaan method, interpretation of the HF results (orbitals, density, population
analysis, Koopmans theorem), basic elements of the Density Functional Theory (DFT),
Hohenberg-Kohn theorems, Kohn-Sham DFT, functionals, hybrid methods; atomic
basis sets.




Reminder

In quantum mechanics physical quantities are represented by operators.

Basic operators are the coordinate £ and momentum p:
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All other operators can be derived by replacing coordinate and momen-
tum in the classical formula by the operators.

Example: kinetic energy




Reminder

Measurement

According to quantum mechanics, the result of a measurement can only
be the eigenvalue of the corresponding operator.

Aﬁbi(iﬂ) = a;Q;

where a; is the ith eigenvalue, ¢; is corresponding eigenfunction.




Reminder

Two operators commute, if

i.e. their commutator is vanishing. In this case the corresponding two
physical quantities can be measured simultaneously.

Otherwise, the two physical quantities can be measured only with some
uncertainty:

[52',]5@] = h#0
!
1

This is the famous Heisenberg uncertainty principle.
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Angular momentum operators

Classical angular momentum:

[ = rxp

le = YDz — 2Py
ly = 2Pz — I
l. = Zpy— Ypz-
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Angular momentum operators

Classical angular momentum:

[ = rxp

le = Yp: — 2Dy
ly = 2Pz — D
l: = xpy — YDa

Thus, with the definition of #, 2, and p one can obtain the corresponding
operators for the angular momentum:
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Angular momentum operators

It is easy to derive some important properties of the angular momentum
operators:

A ~ ] )
le,l,| = 1ihl,
Z Z 3 h Z 4 Eigenvalue 3
R of /,
Yy lz Wby ' ]
[ A ~ N ]
l l . h l Square-root
—_ of the eigenvalue t
zy by - Z ’y of 2 ¢
/\2 N Fig. 4.2 The cone used to ;
. represent a state of Jﬂgl]lﬂl' t
l , l'l/ — O’ ’I/ _— :,C’ y7 Z momentum with specified €
magnimdc and Z-component.

A

This means that [ does not have any two components which can be
measured at the same time. It is [? (square length) and one component of

[ which can be obtained simultaneously.




Angular momentum operators

z component of the angular momentum:
. , 0 0
l,=—th|x— — y—
Oy Ox

Let us use a spherical coordinate system!

xr = rsinvcosyp
y = rsindsine
z = rcos? I':G
Ox , _
— = —rsindsinp = —y
Oy
Oy .
—— = rsindcosp ==
Oy
0z
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Angular momentum operators

— = —rsinvsiny = —y

—— = rsindcosp =<

First we recognize that

( 0 8) 0
rT— —Yy— | = —
oy Ox Oy

One can easily prove this using the , chain-rule”:

o 00z n 0 0y n 0 0z
dp  Oxdyp Oydyp 9z0¢
0 0 0 0 0

= ——y+t—xz+_—-0= (zc——y—> QED

Ox oy 0 oy Ox

11



Angular momentum operators

The z component of the angular momentum operator therefore reads:

I, = —ihi
Dy

Eigenfunctions and eigenvalues of the z component of the angular
momentum:

[, =mh, m =0, +£1, ...
1
@ (¢) z\/—%-e@m% m =0, =1, ...
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Angular momentum operators

12 in spherical coordinates:
1 0 0 1 o
P o= —r|—= <sim9—> +—
sin ¥ 99 09/  sin® ¥ Op?
A (9)
The eigensystem of the [? operator
A = IL(I4+1DR> 1>]|m]
Y (9,0) = O (cos(9)) - e
[ = 0,1,2
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Magnetic moment

If a charged particle is moving on a circle (has angular momentum), it
also has magnetic moment. The magnetic moment vector (u) is therefore
proportional to the angular momentum vector, for example the z component
IS:

(& A

z lz
H 2 Mej

The system having a magnetic moment will interact with the magnetic
field, its energy will change due to this interaction:

€

AE = B, -1

2 Mel

where B, is the z component of the magnetic induction, which is quantity
characterizing the strength of the magnetic field.
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Magnetic moment

The possible values of [, = m - h, where m = 0, &1, ... Therefore
AFE = B, -up-m
where up = szf is a constant called Bohr-magneton.

el

What does this mean? According to the equations above, the energy of the particle
with angular momentum in magnetic field depends on the quantum number m: if m is
positive, it will grow; if m is negative, it will decrease; and it is not changing for m = 0.
Since there are 2] + 1 possible values of m, there will be 21 + 1 different energy levels,
the degeneracy of these levels will be lifted! This is the so called Zeeman-effekt.
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The spin of the electron

Stern-Gerlach experiment:

Classical
prédiclion What was _
actually observed Slvar o
b % Furnace
-l-l.'-
Inhomogenaous
magnetc field

The beam splited in to 2 beams, and not 1, 3, 5, 7, etc., as expected
form the properties of the angular momentum!!
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The spin of the electron

To explain this experiment

e Pauli (1925): a , fourth quantum number” is needed;

e Goudsmit and Uhlenbeck suggested the concept of spin, as the ,, internal
angular momentum”

In mathematical form:

ﬁ — (Sxa §y7 §z)
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The spin of the electrons

The commutation properties of this new operator are the same as of the
angular momentum, since it describes similar property:

85,8, = ihs.

5%,8] = 0O I =T,Y, 2

Eigenvalues have again similar properties than in case of the angular
momentum:

5% eigenvalues : s(s+1) [R?]

S, eigenvalues : ms=—s,—s+1,...,s |h]
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The spin of the electrons

What are the possible values of the new quantum numbers s and m?
This can be obtained from the Stern-Gerlach experiment: there were two
beams, so that m4 can have only two values:

ms = y T A

Therefore

is the only proper choice!!!

Electron has a charge of —1, and a spin of%!!!!
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The spin of the electron

There are two eigenvalues of s, therefore there are two eigenfunctions (o)
and B(o) (o is the spin coordinate):

1
s, alc) = 5 a(o)
) 1
Sz 6(0-) — _5 6(0-)
Pauli matrices:
) 10
= (6
, 0 l)
S, = 2
(]
0 .

>
8
I
7 N\
N .
=
N
N
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The spin of the electron

The total wave function of the electron atom must be supplemented by
the spin, thus it depends on four variables:

u(z,y,z)a(o)
or = u(x,y,z2)5(0)

U(z,y,z2,0)

@D,
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Spin-orbit interaction

There are two different types of angular momenta:

e angular momentum resulting from the motion of electrons (1),
(orbital angular momentum);

e angular momentum originating from the spin (8) (spin momentum).
These magnetic moments can interact, causing an energy change:
H — H+(¢-1-3
where ( is a constant.
Consequences:
e the Hamilton operator will not commute with lAQ, l; and s, operators;

e energy will depend on the quantum number [.
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Quantum mechanical description of the hydrogen atom

The Hamiltonian of the hydrogen atom (in atomic units):

A 1 1
H = —A——-
2 r

The Hamiltonian in spherical coordinates:

ol [52 +2Q+i(_[z)] 1

2002 " ror  r2
Relation of the Hamiltonian with angular momentum:

{}AI,ZAZ} =0 and [ﬁ[,lﬂ =0

Since [, and [2 depend only on the variables ¢ and ¢, the wave function
can be written as:

v (7“, v, 90) =R (T) }/lm (197 @)

23



Quantum mechanical description of the hydrogen atom

Solution of the Schrodinger equation for the hydrogen atom

Eigenfunctions:

U (r,0,¢) = Ru (1) Y™ (9, 0) = Ry (1) OF (9) e~ im¢

Eigenvalues (hartree units):

1
E,=—(F
2n2( )
Quantum numbers:
n = 1,2,3,..
I = 0,1,2,..n—1

m = —1,—14+1,..,0,1—1,1
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Quantum mechanical description of the hydrogen atom

Eigenfunctions of the hydrogen molecule (Vi ):

Wigo = ﬁe_r
Waoo = 4\/15(2 —r)e”"?
Uy = 4\/1§re_"“/2 cos (1)

Vo1 = —8\157“6_7”/2 sin(9)e*"?

Wa00 = 5725=(27 — 187 + 2r2)e /3

= 81\/—7“(6 rYe”"/3 cos(19)
V3141 = 81\/—7“(6 r)e "% sin(9)e™
Wi20 = groe=" e "/3(3 cos?(9) — 1)
Wsot1 = gr =T e~ "/3 sin(¥) cos(¥)eT¥

— 1 ,',,26—7“/3 Sin2(19)ej:2igo
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Angular momentum of the H atom

The angular momentum values belonging to the orbitals of the H atom:

orbital n | m AX=11+1[R] L =mh
Is 1 0 0 0 0
25 2 0 0 0 0
20 2 1 0 2 0
2p1 2 1 1 , 1
2p_1 2 1 -1 . -1
3 3 0 0 0 0
30 3 1 0 2 0
3p1 3 1 1 , 1
3p.1 3 1 -1 , -1
3dg 3 2 0 6 0
3d;, 3 2 1 6 1
3d_; 3 2 -1 6 -1
3dy 3 2 2 6 2
3d_y 3 2 -2 6 -2
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Angular momentum of the H atom

Angular momentum vectors of the 3d orbitals:

z
— T +2

+1

(b)
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The states of the hydrogen atom including spin

Wave function:

n,l,m,mg
Quantum numbers:
n = 1,2,...
[ = 0,1,...,n—1
m = —l,—l+1,...,1
11
ms = ——,—
2" 2

Energy depends still only on quantum number n (2n?-fold degeneracy):

1
E, = —|FE
2n2[ a
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