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Electronic structure of atoms

The Hamiltonian in atomic units:

Ĥ = −1

2

electrons∑
i

∆i︸ ︷︷ ︸
kinetic energy of electrons

−
electrons∑

i

ZA
riA︸ ︷︷ ︸

electron−nuclei attraction

+

electrons∑
i

electrons∑
j<i

1

rij︸ ︷︷ ︸
electron−electron repulsion

• ZA being the charge of nucleus A;

• rij being the distance of electrons i and j;

• riA is the distance of electron i and nucleus A;
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Electronic structure of atoms

The Hamiltonian in atomic units:

Ĥ = −1

2

electrons∑
i

∆i︸ ︷︷ ︸
kinetic energy of electrons

−
electrons∑

i

ZA
riA︸ ︷︷ ︸

electron−nuclei attraction

+

electrons∑
i

electrons∑
j<i

1

rij︸ ︷︷ ︸
electron−electron repulsion

Wave function of the many electron system

Ψ = Ψ(x1, y1, z1, σ1, x2, y2, z2, σ2, ..., xn, yn, zn, σn)

≡ Ψ(1, 2, ..., n)

i.e. a function with 4n variables.
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The Independent Particle Approximation

a) Hartree-method: Approximation of the wave function in a product form

Ψ(r1, r2, ..., rn)︸ ︷︷ ︸
wave function

= φ1(r1) · φ2(r2)... · φn(rn)︸ ︷︷ ︸
product of spin orbitals

In this case the Schrödinger equation reduces to one-electron equations:

ĤΨ = EΨ ⇒ ĥ1(r1)φ1(r1) = ε1φ1(r1)

ĥ2(r2)φ2(r2) = ε2φ2(r2)

...

ĥn(rn)φn(rn) = εnφn(rn)

One n-electron equation⇒ system of n one-electron equations

ĥi → ĥ
eff
1 = −

1

2
∆i −

ZA

riA
+ V

eff
i

where V eff
i is the interaction of electron i with all other electrons.

31
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Pauli principle and the Slater determinant

b) Hartree-Fock-method:

To fulfill anti-symmetry of the wave function, use determinant (Slater determinant):

Ψ(r1, r2, ..., rn) =
1
√
n

∣∣∣∣∣∣∣∣
φ1(r1) φ2(r1) · · · φn(r1)

φ1(r2) φ2(r2) · · · φn(r2)
... ... ... ...

φ1(rn) φ2(rn) · · · φn(rn)

∣∣∣∣∣∣∣∣
To fulfill the indistinguishability, use the same operator (Fock operator) for all electrons:

ĥ
eff
i → f̂(ri) = −

1

2
∆i −

ZA

riA
+ U

HF

with UHF being an averaged (Hartree-Fock) potential.

The Hartree-Fock equation:

f̂(ri)ϕi(ri) = εiϕi(ri) i = 1, · · · , n
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Electronic structure of atoms

In the Independent Particle Approximation the equations to solve:

ĥ(i)φi = εiφi

ĥ(i) = −
1

2
∆i −

1

r
+ V

Since ĥ is similar to the Hamiltonian of the hydrogen atom, the solutions will also be

similar:

The angular part of the wave functions will be the SAME. Therefore we can again classify

the orbitals as 1s, 2s, 2p0, 2p1, 2p−1, etc.

The radial part: R(r) will differ, since the potential is different here than for the H atom:

since it is not a simple Coulomb-potencial, the degeneracy according to l quantum number

will be lifted, i.e. the orbital energies will depend not only on n but also on l (ε = εnl).
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Electronic structure of atoms: angular momentum

one particle: l̂2 l̂z ŝ2 ŝz
many particle: L̂2 L̂z Ŝ2 Ŝz

The angular momentum of the system is given by the sum of the individual angular

momentum of the particles ( so called vector model or Sommerfeld model):

L̂ =
∑
i

l̂(i)

Ŝ =
∑
i

ŝ(i)

It follows that the z component of L̂ and Ŝ is simply the sum of the z component of the

individual vectors:

ML =
∑
i

m(i) MS =
∑
i

ms(i)
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Electronic structure of atoms: angular momentum

L̂ =
∑
i

l̂(i) Ŝ =
∑
i

ŝ(i)

The length of the vector is much more complicated: due to the quantizations and

uncertainty principle, we can get different results: For exemple for two particles:

L = (l(1) + l(2)), (l(1) + l(2)− 1), · · · , |l(1)− l(2)|

S = (s(1) + s(1)), (s(1)− s(2))
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Classification and notation of the atomic states

The Hamiltonian commutes with L̂2, L̂z, Ŝ2 and Ŝz operators⇒ we can classify the

atomic states by the corresponding quantum numbers of the angular momentum operators:

ΨL,ML,S,Ms
= |L,ML, S,Ms〉

The latter notation is more popular.

In analogy to the hydrogen atom, the states can be classified according to the quantum

numbers:

Angular momentum:

L= 0 1 2 3 4 5 · · ·
notation: S P D F G H · · ·
degeneracy 1 3 5 7 9 11 · · ·

Spin momentum:

S= 0 1
2 1 3

2 2 · · ·
multiplicity (2S+1): 1 2 3 4 · · ·
denomination: singlet doublet triplet quartet · · ·
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Classification and notation of the atomic states

In the full notation one takes the notation of the above table for the given L and

writes the multiplicity as superscript before it:

Examples:

L = 0, S = 0: 1S read: singlet S

L = 2, S = 1: 3D read: triplet D

Total degeneracy is (2S+1)(2L+1)-fold!!
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Construction of the atomic states

Since there is a high-level degeneracy, degenerate orbitals are often not fully occupied →
configuration is not sufficient to represent the states.

Example: carbon atom

1s2 2s2 2p2

2p is open subshell, since only two electrons are there for six possible places on the

2p subshell.

What are the possibilities to put the two electrons onto these orbitals?

spatial part: 2p0, 2p1, 2p−1

spin part: α, β

These gives altogether six spin orbitals which allow to construct

(
6

2

)
= 15

determinants, i.e. we have 15 different states.
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Construction of the atomic states

Let us construct the states by summing the angular momenta:

l(1) = 1, l(2) = 1 → L = (l(1) + l(2)), (l(1) + l(2)− 1), ..., |l(1)− l(2)| = 2, 1, 0

s(1) =
1

2
, s(2) =

1

2
→ S = (s(1) + s(2)), (s(1)− s(2)) = 1, 0

Possible states:

1
S 1P

1
D

3
S 3P

3
D

Considering the degeneracy there are 36 states. But we can have only 15, as was shown

above!
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Construction of the atomic states

We also have to consider Pauli principle, which says that two electrons can not be in the

same state.

If we consider this, too, the following states will be allowed:

1
S 3P

1
D

These give exactly 15 states, so that everything is round now!
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Construction of the atomic states

Summarized: carbon atom in the 2p2 configuration has three energy levels.

What is the order of these states?

Hund’s rule (from experiment;
”
Nun, einfach durch Anstieren der Spektren”):

• the state with the maximum multiplicity is the most stable (there is an interaction

called
”
exchange” which exists only between same spins);

• if multiplicities are the same, the state with larger L value is lower in energy;

In case of the carbon atom:

E3P < E1D < E1S
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Spin-orbit interaction, total angular momentum

As in case of the hydrogen atom, orbital and spin angular momenta interact. The

Hamiltonian changes according to these interaction as:

Ĥ → Ĥ +
∑
i

ζ l̂(i) · ŝ(i)

Consequence: L̂2 and Ŝ2 do not commute with Ĥ anymore, thus L and S will not

be suitable to label the states (
”
not good quantum numbers”). One can, however, define

the total angular momentum operator as:

Ĵ = L̂+ Ŝ

which

[Ĥ, Ĵ
2
] = 0 [Ĥ, Ĵz] = 0

i.e. the eigenvalues of Ĵ2 and Ĵz are good quantum numbers.
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Spin-orbit interaction, total angular momentum

These eigenvalues again follow the same pattern than in case of other angular

momentum-type operators we have already observed:

Ĵ
2 → J(J + 1) [h̄

2
]

Ĵz → MJ [h̄]

The quantum numbers J and MJ of the total angular momentum operators follow

the same summation rule which was discussed above, i.e.

J = L+ S,L+ S − 1, · · · , |L− S|

Energy depends on J only, therefore degenerate energy level might split!!
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Spin-orbit interaction, total angular momentum

Notation: even though L and S are not good quantum numbers, we keep the notation

but we extend it with a subscript giving the value of J .

Example I: carbon atom, 3P state:

L = 1, S = 1 → J = 2, 1, 0

3
P → 3

P2,
3
P1,

3
P0

Energy splits into three levels!

Example II: carbon atom 1D state:

L = 2, S = 0 → J = 2

1
D → 1

D2

There is no splitting of energy here, J can have only one value. This should not be a

surprise since S = 0 means zero spin momentum, therefore no spin-orbit inetarction!!!

44
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Electronic structure of atom: magnetic field

Considering the total angular momentum, the change of energy in magnetic field reads:

∆E = MJ · µB · Bz

MJ = −J,−J + 1, . . . , J

This means, levels will split into 2J + 1 sublevels!
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Electronic states of atoms: summary

Carbon atom in 2p2 configuration:
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Electronic states of atoms: summary

Other configuration for p shell:

p1 and p5 2P B, F

p2 and p4 3P, 1D, 1S C, O

p3 4S, 2D, 2P N

p6 (closed shell) 1S Ne
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