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Density Functional Theory
(DFT)
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Wave function vs. density

The wave function is a 4N dimensional function which determines all properties of the

system:

Ψ = Ψ (τ1, τ2, ..., τN) τi = (ri, σi)

E = 〈Ψ|Ĥ|Ψ〉 i.e. E = E[Ψ]

On the other hand, the density is a three dimensional function:

ρ(r1) = N ·
∫ ∫

...
∫

Ψ (τ1, τ2, ..., τN)
∗

Ψ (τ1, τ2, ..., τN) dσ1dτ2 · · · dτN ,

which gives the probability of finding a single electron at a given point.

The density can be calculated from the wave function:

Ψ → ρ(r)

Intuitively, one would assume that it also gives all properties of the systems:

ρ
?→ E i.e. E

?
= E[ρ]
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Splitting up of the Hamiltonian

Ĥ = −
∑
i

1

2
∆i︸ ︷︷ ︸

T̂

+
∑
i<j

1

rij︸ ︷︷ ︸
Vee

−
∑
i

∑
A

ZA
riA︸ ︷︷ ︸

V (r)

• T̂ kinetic energy, not system specific;

• Vee electron-electron repulsion, defined by N , not system specific;

• V (r) depends only on the nuclei, called the
”
external potential”.

The first two terms is the same for all system, while the
”
external potential”

defines which molecule we consider (where are the nuclei, what is their
charge).
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First theorem of Hohenberg-Kohn (HK1)

V (r), N → Ĥ
↓ Schrodinger equation

ρ(r) ← E,Ψ

The energy of the system, its wave function and therefore also the density
is determined by the

”
external potential”, i.e. by the molecule.

HK1:

A V (r)
”
external potential” (disregarding a trivial constant term) is

defined completely by the electron density.

Therefore, considering also the relations in the above figure:

V (r) ↔ ρ(r)
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Energy as functional of the density

Molecule → position of the nuclei → V (r) → ρ(r) → energy

Therefore the energy is a functional of the density:

E[ρ] = T [ρ] + Eee[ρ] + Ene[ρ]

• T [ρ] is the kinetic energy, its form is unknown

• Eee[ρ] = J [ρ] + Ex[ρ]: electron-electron interaction, summ of the Cou-
lomb (J) and the exchange (Ex) contributions. The functional form is
known for (J) but not for (Ex).

• Ene[ρ] interaction between electron and nuclei, form is know, can be
calculated from V (

∫
ρ V dr)

T [ρ] and Eee[ρ] are universal, Ene[ρ] system dependent.
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Second theorem of Hohenberg-Kohn (HK2)

HK2:

The variational principle is also valid for the energy functional, i.e. the
energy is minimal with the exact electron density

This means, the best density can be obtain by minimization, provided
the form of the functional is known.

But the form of the functional is not known!

What we know is that the relations can be rationalized through the
Schrödinger equation, but we do not know whether an analytical form exists
at all (most probably it does not exists!!)

V (r), N → Ĥ
l ↓ Schrodinger egyenlet
ρ(r) ← E,Ψ
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Kohn-Sham (KS) DFT

Construct the functional of the kinetic energy for a system with non-interacting

particles, assuming the same density as of the investigated system:

TS =
occ∑
i

〈ϕi| −
1

2
∆|ϕi〉

and
ρ(r) =

occ∑
i

ϕ
∗
i (r)ϕi(r)

Note the we have introduced orbitals, from now on we not simply treat the density.

TS is not the same as T [ρ] it is just an approximation:

T [ρ] = TS[ρ] + Ec[ρ]

with correction Ec being the
”
correlation contribution” which is not known!!

Exc[ρ] = T [ρ]− TS[ρ] + Ex[ρ]

is the so called exchange-correlation functional, which collects all the the unknown

contributions. We have no idea how it looks like!!!
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Kohn-Sham (KS) DFT

Thus, the so called Kohn-Sham energy functional has the form:

EKS[ρ] = TS[ρ] + J[ρ] + Ene[ρ] + Exc[ρ]

Applying the variational principle (look for the
”
best” density which gives the lowest

energy), we arrive at one-particle equations which are similar to that of the Hartree-Fock

method and called the Kohn-Sham equation:

ĥKS ϕi = εi ϕi

ĥKS = −
1

2
∆ + V̂ne + Ĵ + V̂xc

Comparing to the Fock operator

f̂ = −
1

2
∆ + V̂ne + Ĵ − K̂

the only difference is that the exchange (K̂) is replaced by
”
exchange-correlation” potential

(Vxc) .
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Kohn-Sham (KS) DFT

ĥKS ϕi = εi ϕi

ĥKS = −1

2
∆ + V̂ne + Ĵ + V̂xc

From the Kohn-Sham equation we get orbitals and orbital energies and
we can calculate the density from the orbitals. Using the density, all the
properties can be calculated.

Problem: if we don’t know Exc, we do not know Vxc, either!!!!

The different DFT methods differ in the choice of the functional Vxc.
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DFT functionals

There are several levels of the approximation (Jacob’s ladder of DFT):

1. Assuming homogeneous electron gas – Vxc can be calculated from the density;

2. Gradient-corrected (GGA - General Gradient Approximation) functionals:

• functional Vxc depends not only on the density but also on its gradients

• expansion according to these quantities

• empirical parameters← fitted on chemical systems

3. Hybrid methods

• exchange part of the potential from Hartree-Fock (
”
exact exchange”)

• new parameters← fitted on chemical properties

4. Correction for long distance interactions

• empirical

• from wave function methods
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DFT functionals

Approximation exchange correlation
Vx Vc

1) homogeneous electron gas LDA VWN
2) Gradient-corrected (GGA) PW86 LYP

B88 PW91
PBE PBE

3) Hybrid methods B3 B3
PBE0

4) Correction for long distance interactions DFT-D
Double-hybrid DFT

M06
M06-2X
M06-L

M06-HF

The name of the functional is the combination of the names of the exchange and

correlation part (e.g. B3-LYP). Abbreviations on the following page
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DFT functionals

Abbreviations:

LDA – Local Density Approximation (used mostly in solid state physics)

VWN – Vosko, Wilk, Nusair correlation functional

PW86 – Perdew an Wang functional from 1986

LYP – Lee, Young and Parr correlation functional

B88 – Becke’s exchange functional from 1988

PW90 – Perdew and Wang functional from 1991

PBE – Perdew, Burke and Erzenhof functional

B3 - Becke’s hybrid functional

PBE – Perdew, Burke and Erzenhof hybrid exchange functional

DFT-D – dispersion-corrected functional (Grimme)

M06-yy – Truhlar’s (Minnesota) series of functionals
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Performance of the DFT methods (kcal/mol)∗

Method Mean abs. dev. Maximum error
G2∗∗ 1.6 8.2
SVWN (LDA-VWN) 90.9 228.7
BLYP 7.1 28.4
BPW91 7.9 32.2
B3LYP 3.1 20.1
B3PW91 3.5 21.8

∗ Using atomization and ionization energy as well as electron affinity of 126 molecules.

∗∗ combination of wave function methods (best one can do, very expensive).
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Basis sets used in
computational chemistry
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The LCAO-MO approximation

Above we have discussed the approximation: molecular orbitals are
expanded on atomic bases:

ϕi =
∑
a

cai χa

This is the so called LCAO-MO (Linear Combination of Atomic Orbitals
for Molecular Orbitals) approximation, which is almost always used in
computational chemistry, both in Hartree-Fock and DFT calculations.

The quality of the basis largely determines the quality of the results.
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Form of the basis functions

According to the chemical intuition, MO’s can be obtained from AO’s. Best
choice would be to use atomic orbitals obtained for the atoms within the
IPA calculation.

STO: Slater-type orbitals

χn,l,m(r, θ, ϕ) ∼ rn−1e−ζr Y ml (θ, ϕ)

ζ is the parameter of the function. A few Slater functions give already a
quite good qualitative description.

Problem: calculation of the electron-electron interaction is complicated
with these functions.
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Form of the basis functions

GTO: Gauss-type orbitals

gb = χijk = x
i
y
j
z
k
e
−ζr2

This form is based on Cartesian coordinates, and instead of quantum number l, the

exponent of x, y, z coordinates are used to form the necessary functions:

• s function i = j = k = 0;

• p function, e.g. i = 1, j = k = 0;

• d function, e.g. i = 1, j = 1, k = 0.

Here also ζ is the only parameter.

Advantage: product of two Gaussian functions placed in different points of space

is also a Gaussian function, therefore the electron-electron interaction can be calculated

easily!

Disadvantage: falloff is too fast, and there is no cusp → for the same quality more

Gaussian functions are needed than Slater functions.
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Form of the basis functions

CGTO: Contracted Gauss-type orbitals

χa =
∑
b

dab gb

i.e. the basis functions are fixed combination of so called primitive Gaussian functions

(described on the previous slide). Coefficients dab are additional parameters of the basis

set, they are obtained from a previous calculation. One possibility: expansion of Slater

function on the Gaussian ones (STO − nG).
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Gaussian basis functions used in practice

- Minimal basis: one function for all occupied sub-shell. For example:
H one s-type function

C two s, one set of p (all together five functions)

- Double zeta (DZ) basis: two functions for all occupied sub-shell. For example:
H two s-type functions

C four s, two sets of p (all together ten functions)

O four s, two sets of p (all together ten functions)

- Triple zeta (TZ) basis: three functions for all occupied sub-shell.

- Polarization functions: include also functions with larger l than that of the occupied

shells. For example, in case of DZP:
H two s-type functions and one set of p

C four s, two sets of p one set of d

O four s, two sets of p one set of d
For the description of electron correlation, polarization functions are necessary!

- Diffuse functions: include additional functions with smaller zeta exponents. These

decay slower and required to describe extended wave function (e.g. anions).
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Gaussian basis functions used in practice

- Split-valence basis

Chemistry takes place in the valence shell, therefore it is not necessary to use too

many functions for the inner shells. Leave out the functions describing the core from the

optimization procedure, use them with a fixed coefficient. For example, use contraction

like:

4︸︷︷︸ − 2 1︸︷︷︸ G︸︷︷︸
inner shell valence shell Gaussian

four GTO 2+1 GTO

one CGTO 2 db CGTO

For example, the 3-21G basis:

subshell GTO CGTO

H 1 s 3 Gaussians → two functions

1 s 3 Gaussians → one function

C 2 s 3 Gaussians → two functions

2 p 3x3 Gaussians → 2x3 functions
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Gaussian basis functions used in practice

- Split-valence basis (cont.)

Polarization functions

6− 31G∗ ← polarization function on second row atoms

6− 31G∗∗ ← polarization function als on H atom

Diffuse functions (small exponents, slow falloff)

6− 31G+ ← diffuse function on second row atoms

6− 31G++ ← diffuse function also on H atom

These are important for long range interactions, diffuse electron distributions (e.g.

anions).
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Gaussian basis functions used in practice

-
”

Correlation Consistent” basis: cc-pVXZ

cc: correlation consistent – for higher level (correlation) calculations

p: polarized – includes polarization function

V: valence –
”
split valence” type

XZ: DZ (double zeta), TZ (triple zeta), QZ, quadruple zeta, etc.

For example, cc-pVTZ is
”
triple zeta” type basis (polarization functions in red):

H three s type functions, two stes of p, one set ofd

C one + three s type functions, three sets of p, two stes of d, one set off

O one + three s type functions, three sets of p, two stes of d, one set off

Further variants:

aug-cc-pVXZ: includes also diffuse functions

cc-pCVXZ: includes also
”
core” functions
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