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Methods




The Independent Particle Approximation (IPA)

Hartree-method: Approximation of the wave function in a product form

:If(’l”l, T2y «ouy ’I”n)/ = ?1(7“1) . qbg(’)"g)... . qﬁn(rn)J

'
wave function product of spin orbitals
spinorbital:
©i(1) = @i(Ti, Yi, zi, 00) = u(xi, Yi, 2i) (o)
or = u(®i,Yi, zi) B(0i)
spatial‘rorbital
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The Independent Particle Approximation (IPA)

Hartree-method: Approximation of the wave function in a product form

EIJ(’I”l, T2y «ouy ’I”n)/ — ?1(7“1) . qbg(’)"z)... . qbn(’)"n)J
wave Plfnction e

product of spin orbitals

In this case the Schrodinger equation reduces to one-electron equations:

HU =E¥ = hi(1)pi(1) =e101(1)
32(2)902(@ = £2¢p2(2)

Bn(”)@n(”) — 5n@n(n)

One n-electron equation = system of n one-electron equations

Z A

;A

_|_ Veff

A A 1
hi — hiff:—EAi—

where fof is the interaction of electron 7 with all other electrons.
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Slater-determinant

According to the Pauli principle, the wave function of the electrons is
anti-symmetric with respect to the interchange of two electrons:

Po¥(1,2,...,n) = —U(1,2,...,n)

To fullfil anti-symmetry, instead of product wave function we have to use
determinant (Slater determinant):

p1(1)  @2(1) - pp(1)
W(1,2,..,n) = % AR 2 e
p1(n) p2(n) -+ pn(n)

— \/% (p1(1) - 92(2) - oo - op(n) — 1(2) - p2(1) - ... - @p(n) + ...)
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Expectation value of the energy with determinant wave
function

Split up the Hamiltonian into zero-, one- and two-electron parts:

S N

7

Z h(i ﬁ]z ﬁlo

The expression for the energy (¥ stands for a determinant):

E = <\IJ‘H‘\IJ> = <\P'Zh fo>+<x1'J Zi \If>+H0

i>j |4
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Expectation value of the energy with determinant wave

function
‘If> + Hy

B = (v|i|v) - <\p‘ Sk \p> " <\p

One can derive that
Z sz + Z 1] ’L] + HO

1>

=

i<j Tij

o Hii = [ ¢i|h|¢; dv;
— one-electron contribution of electron ¢ including the kinetic energy and
the attraction to the nuclei;

o Jij= [ [ di(1)d;(2);50i(1)d;(2) dvr dvy
— Coulomb mtegral representing the electron-electron interaction;
o Kij= [ [ (1) 165 (1)¢i(2) dur dvy

— exchange mtegral consequence of the anti-symmetry.
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The Hartree-Fock method

Wave function: determinant:

e1(1)  @2(l) -+ (1)
U(1,2,..,n) = % 9015(2) 9025(2) soni(2)
pi(n) @2(n) -+ @n(n)

We look for the , the best’ determinant!

e Since the determinant consist of orbitals, we have to obtain those orbitals
which result in , the best’ determinant.

What is , the best’ 7

e According to the variation principle, the best determinant gives the lowest

energy.
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The Hartree-Fock method

Expression of the energy:
A 1
E = <xp)H‘xp> = > Hit 5> (Ji = Kyy),
i i>j

which is the functional of the orbitals ({¢;,i = 1,...,n}). Therefore we
have to look for the minimum of this functional.

Required condition: orbitals are orthonormal:
(pilpj) =8Sij =065 Vi,j — (¥|¥)=1

Therefore the functional to be varied is (¢'s are Lagrange-multiplicators):
G = E—) > cij(Sy—0dy)
v ]

oG = Z (5Hw + % Z (5ng — 5Kz]) — Zé‘ij 5‘9’03 =0
7 1] 1)
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The Hartree-Fock method

(7 functional has extremum for those orbitals which fulfill:

e S0 (1K) | o) = e
i J J

By defining the operator:
J
we arrive at the following equation:
fgbi:é‘?;gbi 1= 1,...,n

This is the so called Hartree-Fock equation.

¢;) i=1,..

The orbitals satisfying the Hartree-Fock-equation are called canonical orbi-

tals.
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The Hartree-Fock-Roothaan method

Above we have derived the HF equations which, as solution to them, result
in orbitals (one-electron wave functions):

A

f¢zzgz¢z 1= 1,,n

Further approximation: look for the orbitals as the linear combination of
atomic basis function (LCAO-MO approximation):

i = Z CuiXa

with . standing for the atomic orbitals. Inserting this into the HF
equations:

fz CaiXa — & Z CaiXa
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The Hartree-Fock-Roothaan method
fzcaiXa — 5iZCaiXa /<Xb’

ani<Xb Xa> = 5iZCai<Xb Xa>

~N"

f

Fpa Sha

EQZ = 5@§Qz
or by gathering all vectors C; into a matrix:

FC =

[

2

This is a matrix eigenvalue equation (Hartree-Fock-Roothaan equation).
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Interpretation of the results of the Hartree-Fock method

The orbitals (¢;) are obtained from the Hartree-Fock equations:

foi=ci o

In praxis, the orbitals are linear combination of atomic orbitals:
Qbi — Z CaiXa
a

The wave function of the system should be built from the orbitals:

1
U — ﬁdet(@, © a¢n)
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Interpretation of the results of the Hartree-Fock method

The density matrix

According to the quantum mechanics, instead of the wave function, it
is the probability density, which bears physical meaning

\IJ*(£17£27 t 7rn)\P(£17£27 T ,En)d’UldeQ Tt d/Un

The probability of finding an electron at point r (electron density):

p(f) — n//"'/\Ij*(£17£27'"7£n)\11(£17£27”'7£n)dv2dv3"'dvn

In front of the integral the multiplier n is used to add up the contribution
of all undistinguishable electrons.
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Interpretation of the Hartree-Fock results

In case of determinant wave function, the electron density can be given as
the sum of the density of the individual electrons (c.f. Independent Particle
Approximation):

p(r) = Z ¢i(r)i(r)
_ Z Z CaiXa(T Z Chixp(r
— S: S: S: Caz'Cbz' Xa (E)Xb(i)
a b _1 _

-~

Pab

In the second row of the above equation, the orbitals have been expanded on
the atomic orbitals, in the last, the density matrix£ has been introduced.
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Interpretation of the Hartree-Fock results

Population analysis according to Mulliken

From the above formula it is clear that by integrating the electron
density over the whole space, we obtain the number of electrons:

n = /p(f)dv = Z Z Py / Xa(T) X0 (1) dv
— Z Z Pabsab
a b

According to the last equation, the electron density can be distributed
according to contribution by the individual basis functions:

o P,.S.. = P, gives the charge associated with the basis function y,

o PS4, gives the charge associated with the overlap x.xs
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Interpretation of the Hartree-Fock results

From this contributions one can obtain:

® > vcaPuaSaa = D 4ec 4 Paa, which is the charge on atom A

° ZaeA ZbeB P.»Sap, which gives the charge associated with the overlap
of atoms A and B (NOT bond-order!!)

Finally, the total (Mulliken) charge on atom A can be obtained if we
add all contributions associated with atom A:

Z Z PabSab — Z(£ é)aa

acA b acA
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Interpretation of the Hartree-Fock results

Orbital energy, total energy

The eigenvalue of the Fock-operator appearing in the Hartree-Fock
equation (&;) is the orbital energy:

J?

e = (6i|floi) = (0

h+ Z(jg — K)|¢i ) = Hii + Z(Jz'j — Kij)
J J
The sum of the orbital energies of all occupied orbitals is not equal to the total energy:
E # Z&‘@' = ZHii+ ZZ(JU — Kij)
i i i g
1 1
E = ZHMWLQZZ(JM —Kj) =) &~ 522(%‘ — Kij)
i i g i i g

Thus one has to subtract the electron-electron interaction since it appears twice in the sum

of the orbital energies.

155



Interpretation of Hartree-Fock results

lonization energy, Koopmans' theorem

Consider a closed shell system (M), and remove an electron from it
(M™). We assume that the orbitals do not change in this process:

Ey = 2H11 +2Hoo +4J12 — 2K + J11 + Joo
Ey+ = 2Hp1 + Hoo+2J120 — Ko+ J11
AE = FEy+—Ey=—Hoo—2J10+ Ko — Jag = —¢2
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Interpretation of Hartree-Fock results

The ionization energy is therefore equals the negative of the energy of the
orbitals from where the electron has been removed (Koopmans’ theorem):

This approximation works since the errors of the two approximations cancel
each other:

e we use determinental wave function (the so called electron correlation is
not considered);

e orbitals of the ions are not optimized (no orbital relaxation).
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Interpretation of Hartree-Fock results

The ionization energy is therefore equals the negative of the energy of the
orbitals from where the electron has been removed (Koopmans’ theorem):

This approximation works since the errors of the two approximations cancel
each other:

e we use determinental wave function (the so called electron correlation is
not considered);

e orbitals of the ions are not optimized (no orbital relaxation).

Similarly, one could calculate electron affinity:

this is, however, a much worse approximation.
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