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Basic Terms of Group Theory




Basic Terms of Group Theory

A group (G) is a collection of elements which are interrelated by an operation:

A-B = C
for which the following rules must be obeyed:

e set G is closed under the operation:
if A, BeGthen(C eg

e there must be a unit element (F, identity) such that:
E-A=A-FE=A

e multiplication is associative:
A-(B-C)=(A-B)-C

e all elements must have its reciprocal (A1) in the group:
A-S5=5-A=F S=A"1
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Basic Terms of Group Theory

Note that the multiplication is not necessarily commutative:

A-B + B-A

Abelian group: the multiplication for any pair of elements is commutative.

50



Basic Terms of Group Theory

Note that the multiplication is not necessarily commutative:

A-B + B-A

Abelian group: the multiplication for any pair of elements is commutative.

Dimension of the group (h):
e finite group: h < oo

e infinite group: h = oo
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Basic Terms of Group Theory

Group multiplication table: shows the results of multiplication for any pair
of group elements

A B C D
AlA B C D
BB A D C
c|{C D A B
DD C B A

Properties:

e cach element appears only once in each row and column

e multiplication is single valued
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Basic Terms of Group Theory

Group multiplication table: shows the results of multiplication for any pair
of group elements

N>

OO0 w> >
N O > W
W >0 00
> N O 0

Properties:

e cach element appears only once in each row and column

e multiplication is single valued

Subgroup: is a subset of elements which obey the definition of a group, i.e.
multiplication does not lead out of the group.

It must always include E/, and of course the invers of all elements.
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Basic Terms of Group Theory

Conjugate elements: A and B are conjugate to each other, if
e A B, X €¢G and
e B=X"1.4.-X

Properties:

o If A is conjugate to B than B must be conjugate to A, i.e. the group
must have an element Y such that:

A=Y1.B.Y
e If A is conjugate to B and C then B and C' are also conjugate to A.

Class: the complete set of elements which are conjugate to each other.
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Basic Terms of Group Theory

Representation of a group

Remember the definitions: the group is defined by the multiplication
table (relation of the elements) and not by any individual property of the
elements.

The same group can also be represented for example by:

e operators (e.g. symmetry operation — symmetry groups)

e permutations (permutational groups)

e matrices (matrix representation)
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Basic Terms of Group Theory

Assume a group with the following multiplication table:

E B C D
E|E B C D
B|/B E D C
C|C D E B
DD C B E

1 0 0 -1 0 O

E=1 01 0 B = 0O -1 0

0 0 1 0O 0 1
1 0 0 -1 0 0
C=10 -1 0 D = 0 1 0
0 0 1 0 0 1
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Basic Terms of Group Theory

Assume a group with the following multiplication table:

Cow | E Cy o, o)
E | E Cy o, o
02 CQ E 0';) Ov
o, | 0, o E Oy
o, | o, o, Cy FE

The following matrices obey the same multiplication table:

1 0 0 -1 0 0

E=| 01 0 Cy = 0 -1 0

0 0 1 0 0 1
1 0 O -1 0 0
opb=1 0 -1 0 ol = 0 1 0
0O 0 1 0 0 1
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Basic Terms of Group Theory

Representation of a group |

How many matrix representations can a group have?
— As many as you just generate!!!

For example, by similarity transformation we get new set of matrices
which also form a representation:

A =L TAL B' = L7 'BL
A-B = L'AL.- L7 'BL=L"'A.BL=L"'CL ="

By similarity transformation the character of a matrix'| does not change

— the characters of the representing matrices will be characteristic
to the representation of the given dimensionality.

1Sum of the diagonal elements; also called ,,spur” or , trace”.
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Basic Terms of Group Theory

Representation of a group Il

How many matrix representations can a group have?
— As many as you just generate!!!

Also, you can create representation by forming direct sum of matices:
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Basic Terms of Group Theory

Consider a group of two elements:

A B
A|lA B
B|B A
Representation (1) (one dimensional): | Representation (2) (two dimensional):
1 0
(1) — (2) —
A = (1) A= (g 1)
0 =
(1) = (— (2) —
. so= (% 1)

Direct sum representation:

1 0 0 1 0 0
A=AV A@D | 0 1 0 B=BWYapB®? = 0O 0 i
0 0 1 0 —i 0
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Basic Terms of Group Theory

Now the other way around: reducing the representation:

110 O —-1710 O
A=1 0|1 0 B = 00 =2
010 1 0 -2 O

In case of matrices showing block structure, the representation can be
split up. Here:

A = ADgpA®
B = BOgB®

There are two subrepresentations in this case, matrices A(l), B form
representation I'(") | and matrices A(?), B(?) form representation I'(?).

In notation:

r = rWgr®
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Basic Terms of Group Theory

Representation of a group 1]

Are there special ones among the representations?
— Yes, these are the so called irreducible representations.

Irreducible representations: is a nonzero representation that has no proper
subrepresentation.

e basic building blocks of representations

e any representation can be build up from these basic elements
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Basic Terms of Group Theory

Representation of a group Il
General procedure of reducing the representation:
— assume we have a group represented by matrices E, B, C, D, ...
— we perform the same similarity transformation on all of them:
E = L 'EL

B = L 'BL
C = L'CcL

— similarity transformation does not change the multiplication rules
— transformed matrices still give a representation (same character).
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Basic Terms of Group Theory

— Special transformation can lead to block diagonal matrices, e.g.:

( B, 0 0 0 -- \
0 B, 0 O :
B =L 'BL = 0 0 B 0
0 0 0 B

— Block diagonal matrices can be multiplied block-wise:

B, - C, = D
B, C; = Dy

obeying the same multiplication rules

— each block is a new representation.




Basic Terms of Group Theory

Therefore:

If there exists a transformation which brings all matrices of a group to the same block
structure, the representation can be split into ,,smaller” representations — i.e. the original
representation reducible.

Note:

e the character of the representation is changed when it is splited into smaller pieces

e the sum of the character of new representations equals the character of the original
representations

Notation: ' =1y @ T'a G I's P - --

Therefore, a representation is Irreducible if:

e no transformation leading simultaneously to block structure of the matrices exists
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Basic Terms of Group Theory

How many irreducible representations of a group are there?

— One can show that the number of all irreducible representations equals
to the number of the classes of the group.
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Basic Terms of Group Theory

How many irreducible representations of a group are there?

— One can show that the number of all irreducible representations equals
to the number of the classes of the group.

Character table:

Example: Character table of the (5, point group

Cop | B Co ou(xz)  0u(yz)
Aq 1 1 1 1

Ao 1 1 -1 -1

B 1 -1 1 -1

B 1 -1 -1 1

Columns correspond to the classes (in this case elements)

Rows correspond to the irreps and show the character of the elements
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Basic Terms of Group Theory

Basis of a representation
We know the relation between operators and matrices:

Consider a set of (linearly independent) functions {¢;} such that the
space spanned is an invariant space with respect to all operators of the

group. E.g.:
Ap; = ) Ayo;
J
Bo; = > B¢,
J

(jqbz‘ = Z Cij®;
J
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Basic Terms of Group Theory

Basis of a representation

The matrix representation of an operator in this basis can be given as:
Ay = (¢ilAle))
(= [ éi@) dgy(w)da)

The matrices defined this way from operators belonging to a group, form also a group
with the same multiplication table:

e the matrices A, B, ... are the matrix representation of operators A, é, ... on the basis

{d:}.

Notes:

e when transforming the matrices, in fact we transform the basis

e when finding the block diagonal form of the matrices and splitting up the representation
accordingly, we divide up the space into smaller subspaces. Now the elements of
subspaces will be used as basis of the representations.
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Basic Terms of Group Theory

Reducing reducible representations

To split up reducible representations into irreducible ones, one can use
the following formula:

1

= N ) ()

with:
h: order of the group
Ny order of the class

X"'(k): character of kth class corresponding to irrep i

X (k): character of kth class corresponding to the reducible representation




Basic Terms of Group Theory

To find the subspace spanning the irreducible representations, the following
operator can be used, which projects into the space of the ith irrep:

Pi = ZXZ(R) R
R

with R being the element of the group, XZ(}A%) being its character corres-
ponding to the ith irrep.
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Basic Terms of Group Theory

Reducing reducible representations

Example: Two matrices A and B considered above:

1 0 0 -1 0 0
A=101 0 B = 0O 0 1
0 0 1 0 —2 0

Character table for this group?]

c, |A B
A’ 1 1
A” 1 -1
I's gim | 3 -1

The characters of the I's 4;, representation are given as the spur (trace) of the

corresponding matrices.
Note that this is the C's point group, introduced later.
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Basic Terms of Group Theory

c, |A B
A’ 1 1
A” 1 -1
F3 dim 3 -1
ni =+ > ey Ne X (k) x(k)
NA/= %(113+11(—1)) =1 N %
Thus: I's g;=A" @ 2 A”
11010 0 0
A = 0110 B = —11 0
0 | —1

(1-1:34+1-(=1)-(=1)) = 2
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Basic Terms of Group Theory

Direct product representations

Consider two representations on the two bases {¢;(z)} and {¥;(y)}:
Agi(z) =) AL ¢;() Ai(y) =) ALw;(y)
J J

Then:
Agi() = ) ) ALANYR(x)du(y)
k [

i.e. the set {fi;j(x,y)} = {¢i(z) ¥;(y)} also form a basis for the represen-
tation, that of the outer product of the two matrices:

AP®Y A¢®A¢

with A?®¥ having a dimension as product of the dimensions of the two
representations.
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Basic Terms of Group Theory

Direct product representations

Outer product of two matrices:

A1 A
A =
( A Az

A®B

(

Character of A ® B?

AByy
A By

A11B14
A21B14
A11B21
A1 B2y

A B15
A B

Ai12B14
Ag2B11
A28
A9 B2

A11Bi2
A21B12
A11B2
A2y Bos

A12B19
A9 B9
A28
AgoBa9
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Direct product representations

Outer product of two matrices:

S

A®B

All
A21

(

A12
A22

A B
A By

A11B14
A21B14
A11B21
A1 B2y

A B
A B

Ai12B14
Ag2B11
A28
A9 B2

A11Bi2
A21B12
A11B2
A2y Bos

XAaeB = (A11 + Ags) - (B11 + Ba2) = x4 - XB

Basic Terms of Group Theory

A12B19
A9 B9
A28
AgoBa9




Basic Terms of Group Theory

Direct product representations

Notation:

ooy — F(b@Iﬂb

Character of the direct product representation:

The characters of the direct product representation are the products of
the character of the representations forming the original representations.
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Spatial Symmetry of
Molecules




Symmetry operations

A

e (), — proper rotation (around the proper axis) by 27 /n

120°
Ca-i-

-120°
g Cs
S — =

m—n
m—n

" %,

F

e o — reflection (special cases: 6, 6, 64)
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Symmetry operations

e S, — improper rotation: rotation (C),) followed by reflection in a plane
perpendicular to the rotation axis (o)

ST
e

@ c 9 @ 9

i
rotate by 90° : reflect throwgh plane
Q

e i — inversion (% = 32)

A

e I/ — unity: maps the object on itself (required only for mathematical
purposes)

ELTE Eotvos Lordnd University, Institute of Chemistry 76



Point groups
Symmetry operations leaving an object (molecule) unchanged, form a group.

E.g. water (see next page):

A

Operators: Cy, 6,, 6 E

v’

Multiplication table:

Cow | E Cy 6, &,
E|E C, 6, ¢
é 2 é 2 E o ; Oy
6, | 6, 6, E C,
& o 6, Co E
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Point groups

- YA 5
Water: Cy, 0y, 0,,, &

Mirror Plane Mirror Plane

GFZI

2-Fold Rotational Axis
Cs

U-hlz

ELTE Eotvos Lordnd University, Institute of Chemistry
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Point groups

A

Ammonia: é’g, 3 times 6, E

Mirror planes

&

H

T @

C; rotation axis

© 2007 Thomson Higher Education

& ELTE Eétvés Lorand University, Institute of Chemistry
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Point groups

Benzene: CA*6, 6 times ég, o, (horizontal, perpendicular to the main
axis), 6 times &, (including the main axis), i, etc.
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Generators of a group

Set of elements (S) of the group G are called generators if all elements of
G can be generated by multiplication of the elements of S.

Example: benzene
Elements of the point group Dgy:
E, 2Cs, 2C5, Cy, 3C%, 3057, 1, 286, 285, 61, 364, 364
Three generators are able to produce these elements.
Set 1: Cg,Ch and .
Cy3=Cs-Cs, Cy=0C5-Cs-Cs, Co” =Cg-Ch, 6, =0CY i etc.
Set 2: Cs, Gy, G

Set 3:..... several others

The set of the generators is not unique!
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Point groups

Symmetry of molecules are represented by the collection of symmetry
operations leaving it unchanged, i.e. by the point group.

Point groups are represented by the so called Schoenflies-symboles:

AN

e (,: groups including proper rotation C,, only

e (,,. groups including proper rotation C,, and reflection to a plain
including the axis o,

e C,n: groups including proper rotation C,, and reflection to a plain
perpendicular to the axis gy,

e D, : groups including proper rotation C,, and n additional proper rotation

A

C5 perpendicular to the main axis

e D,;: same as D,, with and additional reflection to a plane perpendicular
to the main axis.




Point groups

D,,q: same as D,, with and additional reflection to a plane including the
main axis.

S,,: includes improper rotation .S,

Ty: tetrahedral point group

Csov: proper rotation with arbitrary angle (C) and reflection to a plane
including this axis (6,)

Dop: proper rotation with arbitrary angle (C’OO) and reflection to a plane
perpendicular to this axis ()

O3 : spherical symmetry
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Molecular examples:

Point groups

molecule symmetry operations point group
water Cs, 6y, 0., E Cay
ammonia ég(Z) 3x 6, E C'30
benzene 6'6, 6 x C’Q, op, 6 X 0, i, etc. Degy,
formaldehyde Cy(2), 64, 6, F Ca
ethene Doy,
acetylene Doy,

carbon monoxide
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Symmetry and quantum
mechanics




Symmetry and quantum mechanics

Symmetry operations are represented by operators (R).

What does it mean mathematically: ,, The operations leave the molecule
unchanged”?

It does not change the properties — The symmetry operators commute
with the corresponding operators (e.g. Hamiltonian):
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Symmetry and quantum mechanics

Symmetry operations are represented by operators (R).

What does it mean mathematically: ,, The operations leave the molecule
unchanged”?

It does not change the properties — The symmetry operators commute
with the corresponding operators (e.g. Hamiltonian):

Figure 10.2: Transformation of functions

o4t
Action of a symmetry operator on a function: 0 f

G, !




Symmetry and quantum mechanics

Commuting operators have a common set of eigenfunctions

4

The eigenfunction of the Hamiltonian must also be eigenfunction of the
symmetry operators.

3For easier understanding we disregard degeneracy for the time being.
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Symmetry and quantum mechanics

What are the eigenvalues?

e Like the object (molecule), the wave function is unchanged under the
symmetry operation: » =1

e The wave function can also change sign under the symmetry operation,
since in this case the density |¥|? is still unchanged: r = —1

This eigenvalue will be representative for the wave function (,,good quantum
numbers™):

e r = 1. symmetric

—1: antisymmetric

°
=
I




Symmetry and quantum mechanics

RU = rU

What about the eigenfunctions?
e They form a basis for a representation of the symmetry operations.

Symmetry axiom: the eigenfunctions of the Hamiltonian form an irreducible
representation of the symmetry operations.
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Symmetry and quantum mechanics

We have several symmetry operations, all can have two eigenvalues.
For water, this means 23 possibilities (£ has only one eigenvalue).

Are all of these possible?? No, only four combinations are possible:

CZU ) 02 Ozx O zy
A 1 1 1 1

A, 1 1 -1 -1
b, 1 -1 1 -1
By 1 -1 -1 1

The four possibilities are the irreducible representation.

The character table shows the eigenvalue of the individual operators
corresponding to the irreps.

Thus, wave functions can be classified according to the rows of the
character table, i.e. according to the irreps.
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Symmetry and quantum mechanics

We have several symmetry operations, all can have two eigenvalues.
For water, this means 23 possibilities (£ has only one eigenvalue).

Are all of these possible?? No, only four combinations are possible:

CQU E C12 Ozx O 2y
A 1 1 1 1

Ay 1 1 -1 -1
B 1 -1 1 -1
By 1 -1 -1 1

The four possibilities are the irreducible representation.

The character table shows the eigenvalue of the individual operators
corresponding to the irreps.

Thus, the wave function of water can be classified as A;, Ay, By or Bs.
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Symmetry and quantum mechanics

Other example: ammonia

Cgv E 203 3010
A 1 1 1
Ay 1 1 -1
E 2 -1 0

Here there is also two-dimensional irrep. This means:

e there are two eigenfunctions of the Hamiltonian which have the same
symmetry property

e any combination of these two functions still define a representation of
the group (with the same character)
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Symmetry and quantum mechanics

Other example: ammonia

Cgv E 203 3030
A 1 1 1
Ay 1 1 -1
E 2 -1 0

Here there is also two-dimensional irrep. This means:

e there are two eigenfunctions of the Hamiltonian which have the same

symmetry property

e any combination of these two functions still define a representation of

the group (with the same character)

= it follows that these functions belong to the same eigenvalue of the

Hamiltonian, i.e. degenerate!




Symmetry and quantum mechanics

In summary:

It is worth to use symmetry:

e to classify states
e to speed up calculations

e predict degeneracy
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