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Correlated methods




Reminder: The Hartree—Fock method

Wave function: a Slater-determinant corresponding to a configuration:
%
%

A

Uprp = A(p1(1) p2(2) ¢3(3)...on(n))

antisymmetrizer - Pauli principle
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Reminder: The Hartree—Fock method

Wave function: a Slater-determinant corresponding to a configuration:
%
%

A

Uprp = A(p1(1) p2(2) ¢3(3)...on(n))

antisymmetrizer - Pauli principle

Molecular orbitals (¢;) obtained from:

A

Joi = €y
Vi = ZCmXa Xo : basis functions

(87
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Reiminder: The Hartree—Fock method

Advantages:

Independent particle approximation — concept of orbitals

not very expensive

Problems:

do not describe the proper interaction of electrons
— lack of , electron correlation”

accuracy is limited
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Going beyond Hartree-Fock

Density Functional Theory - DFT

Configuration Interaction (Cl) - expand the wave function on several

determinants

— orbitals form a complete set — determinants build from orbitals also

form a complete set
— expanding the wave function on this set gives the ,exact” solution

Perturbation Theory (PT) - use HF as start

Coupled Cluster (CC) - exponential expansion of the wave function
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The Configuration Interaction (Cl) method

Wave function: linear combination of Slater-determinants
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The Configuration Interaction (Cl) method

Wave function: linear combination of Slater-determinants
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The Configuration Interaction (Cl) method

Wave function: linear combination of Slater-determinants
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Full Cl
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The CI equations

A general way of writing the Cl wave function as linear combination of
determinants:

Vor = Zcpcbp

p

How can we obtain the coefficients? Variationally

This leads to a matrix eigenvalue equation:

fiss

c = FEc

where the matrix elements are:

H?“p — <(I)T|H|(I)p>

The elements of the eigenvector ¢ define the expansion in the first equation.
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Cl expansion space: Truncated ClI

In practice: CISD - only single and double excitations
b, ab
Ocisp = co®ur + Y R+ > o
ia 1>7 a>b
e Doubles, because these give the largest contribution to energy

e Singles also, because needed for one electron properties (not expensive
anyway)
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Cl expansion space: Truncated ClI

In practice: CISD - only single and double excitations
b, ab
Ocisp = co®ur + Y R+ > o
ia 1>7 a>b
e Doubles, because these give the largest contribution to energy

e Singles also, because needed for one electron properties (not expensive
anyway)

This approximation is valid if: ¢y ~ 1,

i.e. the wave function is dominated by the reference (HF) determinant

186



Cl expansion space: Truncated ClI
Co ~~ 1

This is usually satisfied:

e ground electronic states at equilibrium geometry

Very often this is not satisfied:

e low lying virtual orbital
e dissociation, long bonds
e excited states

e ctc.

187



Main problem with CI

Energy does not scale properly with the size of the system:

® not size-consistent

® not size-extensive
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Size-consistency

Consider two subsystems at infinite separation. We have two choices:

e treat the two systems separately;

e consider only a super-system.

Provided that there is no interaction between the two systems, the two
treatments should give the same result, a basic physical requirement.
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Size-consistency

Let us use the CID wave function to describe this system!
For the super — system we have : Vorp=Pygr+ ®p

® p is the sum of all double excitations out of @ (including coefficients).
For the subsystems we can write:

AWorp = Abpp+- 0p

BUoip = Boyp+° op

The product of these two wave functions gives the other choice for the wave
function of the super-system:

Werp PYerp

= AQyp “Opp+" Oup POp+" Opp 10p +4 p POp

= Ouyp+®p+1Pp Bop

ATBYorp
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Size-consistency

This simple model enables us to identify the origin of the size-consistency
error:

The difference of the two super-system wave functions:
A B Az, B
Veorp “VYerp —VYerp = “®p “Pp

I.e. simultaneous double excitations on the subsystems are missing from the
Cl wave function.
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4

lack of size-extensivity




The Coupled-Cluster method

Wave function:
T
Voo = e Pyp

where T, is an excitation operator:

A

T = Ty +Th4 ..

T produces excited determinants, as in Cl:

A 1
_ abc.. xabc..
TPy = | Z ik, Pijk..

" abe...ijk...
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The Coupled-Cluster method

Expanding the exponential

A A

Voo = ef(I)HF:<1—|—T—|—§T2—I—...)(I)HF

which includes higher excitations, i.e. in case of Coupled-Cluster wave

function higher excitations are included without increasing the number of
parameters.

In particular, the quadruply excited term %TQQ plays an important role
(simultaneous double excitation).
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The Coupled-Cluster method

Truncated versions:

e CCSD (T =T, + 1))

e CCSD(T) (T =Ty + 15 + approximate T%)
o CCSDT (T'=T) +Ts + T3)

e CCSDTQ (T =Ty +T» + T3 + T2)

Widely used and very accurate for ground states!

CCSD(T) is considered as the golden standard of quantum chemistry
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PERTURBATION THEORY

The starting point of Rayleigh-Schrodinger Perturbation Theory is the
partitioning of the Hamiltonian:

with f[o being the zeroth order part of the Hamiltonian, V is the perturba-
tion. We need to know the solution for Hy, i.e.

HoUy = Ey¥,

with Wy and Ej being the zeroth order wave function and energy, respecti-
vely.
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PERTURBATION THEORY

In quantum chemistry we often use the so called Mgller-Plesset (MP)
partitioning:

Hy = Z f(0)
i
I.e. sum of the one-electron Fock-operators, since in this case:

¥y = Determinant from the Hartree — Fock calculation

Eo Z €

1st order: Hartree-Fock method

2nd order: MP2 or MBPT(2) method
3rd order: MP3 of MBPT(3) method

etc.




PERTURBATION THEORY

MP2: cheap way to include electron correlation
MP3: usually not any better than MP2

MP4: often very good but expensive

Main problems:

e series may not converge

e gets very expensive
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