
1. The Hartree-Fock method

1.1. The determinant wave function (Slater determinant)

Ψ(1, 2, ..., n) =
1√
n

∣∣∣∣∣∣∣∣∣∣
ϕ1(1) ϕ2(1) · · · ϕn(1)
ϕ1(2) ϕ2(2) · · · ϕn(2)

...
...

...
...

ϕ1(n) ϕ2(n) · · · ϕn(n)

∣∣∣∣∣∣∣∣∣∣
with ϕi as one-electron functions (orbitals).

1.2. Expression of the energy with determinant wave function

Split up the Hamiltonian into zero-, one- and two-electron contributions:

Ĥ = −
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2
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∑
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Ĥ1 =:

∑
i

ĥ(i) Ĥ2 Ĥ0

For simplicity, consider the two electron problem (2x2 determinant):

E =
〈
Ψ(1, 2)|Ĥ|Ψ(1, 2)

〉
Ψ(1, 2) =

1√
2

(
ϕ1(1)ϕ2(2)− ϕ2(1)ϕ1(2)

)
〈ϕi|ϕj〉 = δij

Let start with Ĥ0. Since it does not act on electron coordinates, gives a constant term:
〈
Ψ|Ĥ0|Ψ

〉
=

∑
A<B

〈
Ψ
∣∣∣∣ 1

rAB

∣∣∣∣Ψ〉 =
∑
A<B

1

rAB

〈Ψ|Ψ〉

=
∑
A<B

1

rAB

〈
1√
2

(
ϕ1(1)ϕ2(2)− ϕ2(1)ϕ1(2)

)∣∣∣∣ 1√
2

(
ϕ1(1)ϕ2(2)− ϕ2(1)ϕ1(2)

)〉

=
∑
A<B

1

rAB

1

2

[
〈ϕ1(1)ϕ2(2)|ϕ1(1)ϕ2(2)〉

− 〈ϕ1(1)ϕ2(2)|ϕ2(1)ϕ1(2)〉
− 〈ϕ2(1)ϕ1(2)|ϕ1(1)ϕ2(2)〉

+ 〈ϕ2(1)ϕ1(2)|ϕ2(1)ϕ1(2)〉
]

=
∑
A<B

1

rAB
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]
=
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1
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Note that by this calculation we essentially checked that the 2x2 Slater determinant is normalized.

Continue with the one-electron term:〈
Ψ|Ĥ1|Ψ

〉
=

〈
Ψ
∣∣∣∣∑

i

ĥ(i)
∣∣∣∣Ψ
〉
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=
1

2

〈
ϕ1(1)ϕ2(2)− ϕ2(1)ϕ1(2)

∣∣∣∣ĥ(1)
∣∣∣∣ϕ1(1)ϕ2(2)− ϕ2(1)ϕ1(2)

〉
+

1

2

〈
ϕ1(1)ϕ2(2)− ϕ2(1)ϕ1(2)

∣∣∣∣ĥ(2)
∣∣∣∣ϕ1(1)ϕ2(2)− ϕ2(1)ϕ1(2)

〉

=
1

2

[ 〈
ϕ1(1)ϕ2(2)

∣∣∣∣ĥ(1)
∣∣∣∣ϕ1(1)ϕ2(2)

〉
→ 〈ϕ1|ĥ|ϕ1〉 〈ϕ2|ϕ2〉 = h11

−
〈
ϕ1(1)ϕ2(2)

∣∣∣∣ĥ(1)
∣∣∣∣ϕ2(1)ϕ1(2)

〉
→ 〈ϕ1|ĥ|ϕ2〉 〈ϕ2|ϕ1〉 = 0

−
〈
ϕ2(1)ϕ1(2)

∣∣∣∣ĥ(1)
∣∣∣∣ϕ1(1)ϕ2(2)

〉
→ 〈ϕ2|ĥ|ϕ1〉 〈ϕ1|ϕ2〉 = 0

+
〈
ϕ2(1)ϕ1(2)

∣∣∣∣ĥ(1)
∣∣∣∣ϕ2(1)ϕ1(2)

〉 ]
→ 〈ϕ2|ĥ|ϕ2〉 〈ϕ1|ϕ1〉 = h22

+ the same for ĥ(2)

=
1

2
(h11 + h22) +

1

2
(h11 + h22) = h11 + h22

In the general case: 〈
Ψ
∣∣∣∣Ĥ1

∣∣∣∣Ψ〉 =
∑
i

hii

Finally, the two-electron contribution:〈
Ψ|Ĥ2|Ψ

〉
=

〈
Ψ
∣∣∣∣ 1

r12

∣∣∣∣Ψ〉
=

1

2

[ 〈
ϕ1(1)ϕ2(2)

∣∣∣∣ 1

r12

∣∣∣∣ϕ1(1)ϕ2(2)
〉

→ J12

−
〈
ϕ2(1)ϕ1(2)

∣∣∣∣ 1

r12

∣∣∣∣ϕ1(1)ϕ2(2)
〉

→ K21 = K12

−
〈
ϕ1(1)ϕ2(2)

∣∣∣∣ 1

r12

∣∣∣∣ϕ2(1)ϕ1(2)
〉

→ K12

−
〈
ϕ2(1)ϕ1(2)

∣∣∣∣ 1

r12

∣∣∣∣ϕ2(1)ϕ1(2)
〉 ]

→ J21 = J12

= J12 −K12

In the general case, using the fact that Jii = Kii:

〈
Ψ
∣∣∣∣Ĥ2

∣∣∣∣Ψ〉 =
∑
i<j

(Jij −Kij) =
1

2

∑
ij

(Jij −Kij)

In the above expressions, Jij and Kij are called the Coulomb and exchange integrals, respectively.
These are responsible for the electron-electron interaction. Jij describes the Coulomb interaction of two
charge densities ρi(1) = ϕi(1)ϕi(1) and ρj(2) = ϕj(2)ϕj(2):

Jij =
∫ ∫

ϕi(1)ϕj(2)
1

r12
ϕi(1)ϕj(2) dv1 dv2 =

∫ ∫
ρi(1)

1

r12
ρj(2) dv1 dv2

Kij exchange integral is the consequence of the determinant wave function, thus of the Pauli principle.

If also spin is considere (ϕ1 =: u1α, ϕ2 = u1β):

J12 =
〈
u1α(1)u1β(2)

∣∣∣∣ 1

r12

∣∣∣∣u1α(1)u1β(2)
〉

= J̃11(6= 0)
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K12 =
〈
u1α(1)u1β(2)

∣∣∣∣ 1

r12

∣∣∣∣u1β(1)u1α(2)
〉

=
〈
u1(1)u1(2)

∣∣∣∣ 1

r12

∣∣∣∣u1(1)u1(2)
〉
〈α(1)β(2)|β(1)α(2)〉 = 0

This means that exchange integral is non-zero only in case of two electrond of the same spin.
As example, consider the ground state of the H2 molecule (ϕ1 = u1α, ϕ2 = u1β):

E0 = h11 + h22 + J12 = 2h̃11 + J̃11

i.e. no exchange contribution is present.
In case of a triplet excited state (ϕ1 = u1α, ϕ2 = u2α) we have:

K12 =
〈
u1α(1)u2α(2)

∣∣∣∣ 1

r12

∣∣∣∣u2α(1)u1α(2)
〉

=
〈
u1(1)u2(2)

∣∣∣∣ 1

r12

∣∣∣∣u2(1)u1(2)
〉〈

α(1)α(2)
∣∣∣∣α(1)α(2)

〉
= K̃12

E1 = h11 + h22 + J12 −K12 = h̃11 + h̃22 + J̃12 − K̃12

i.e. exchange is presenet.
This is the theoretical explanation for the Hund’s rule.
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1.3. Obtaining the orbitals by variational mathod

In the HF theory the orbitals building the Slater determinant need to be obtained. One can use the
variational principle, i.e. we look for those orbitals which result in a determinant giving the lowest energy.
The functional of the energy in terms of the orbitals:

E =
〈
Ψ|Ĥ|Ψ

〉
=
∑
i

hii +
1

2

∑
ij

(Jij −Kij)

The extremum of this energy expression should be obtained with maintaining the orthonormality of the
orbitals:

〈Ψ|Ψ〉 = 1 → 〈ϕi|ϕj〉 = Sij = δij ∀ i, j

thus the functional to be varied:

G = E −
∑
i

∑
j

εij (Sij − δij)

δG =
∑
i

δhii +
1

2

∑
ij

(δJij − δKij)−
∑
ij

εij δSij = 0

with εij being the Langrange multiplier.
Consider the variation of the different terms one by one:

hii =
〈
ϕi|ĥ|ϕi

〉
δ hii =

〈
δ ϕi|ĥ|ϕi

〉
+
〈
ϕi|ĥ| δ ϕi

〉
︸ ︷︷ ︸

c.c.

Jij =
〈
ϕi(1)ϕj(2)

∣∣∣∣ 1

r12

∣∣∣∣ϕi(1)ϕj(2)
〉

=:
〈
ϕi(1)|Ĵj(1)|ϕi(1)

〉
δJij =

〈
δϕi(1)ϕj(2)

∣∣∣∣ 1

r12

∣∣∣∣ϕi(1)ϕj(2)
〉

+
〈
ϕi(1) δϕj(2)

∣∣∣∣ 1

r12

∣∣∣∣ϕi(1)ϕj(2)
〉

+ c.c.

=
〈
δ ϕi(1)|Ĵj(1)|ϕi(1)

〉
+

〈
δ ϕj(2)|Ĵi(2)|ϕj(2)

〉
+ c.c.

1

2

∑
ij

δJij =
1

2

∑
ij

〈
δ ϕi(1)|Ĵj(1)|ϕi(1)

〉
+

1

2

∑
ij

〈
δ ϕj(2)|Ĵi(2)|ϕj(2)

〉
+ c.c.

=
∑
ij

〈
δ ϕi(1)|Ĵj(1)|ϕi(1)

〉
+ c.c.

Kij =
〈
ϕi(1)ϕj(2)

∣∣∣∣ 1

r12

∣∣∣∣ϕi(2)ϕj(1)
〉

=:
〈
ϕi(1)|K̂j(1)|ϕi(1)

〉
(
K̂jϕi :=

∫
ϕj(2)

1

r12
ϕi(2)ϕj(1)dr2

)

δKij =
〈
δ ϕi(1)

∣∣∣K̂j(1)ϕi(1)
〉

+
〈
δ ϕj(2)

∣∣∣K̂i(2)ϕj(2)
〉

+ c.c.

1

2

∑
ij

δKij =
∑
ij

〈
δ ϕi(1)

∣∣∣K̂j ϕi(1)
〉

δ Sij = 〈 δ ϕi|ϕj〉+ c.c.
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Thus, the variation of the functional reads:

δ G =
∑
i

〈
δ ϕi|ĥ|ϕi

〉
+ c.c.

+
∑
i

〈
δ ϕi

∣∣∣∣∑
j

Ĵj

∣∣∣∣ϕi

〉
+ c.c.

−
∑
i

〈
δ ϕi

∣∣∣∣∑
j

K̂j

∣∣∣∣ϕi

〉
+ c.c.

−
∑
i

〈
δ ϕi

∣∣∣∣∑
j

εij ϕj

〉
+ c.c.

= 0

This is fulfilled for any variation of δϕi, ifĥ+
∑
j

(
Ĵj − K̂j

) ∣∣∣ϕi

〉
=
∑
j

εij
∣∣∣ϕj

〉
i = 1, ..., n

1.4. The Fockian and its eigenvale equation

One can define the so called Fockian, which is the one elecetron operator of the Hartree-Fock method:

f̂ := ĥ+
∑
j

(
Ĵj − K̂j

)
= ĥ+ ÛHF

With this the above equation reads as:

f̂ϕi =
∑
j

εij ϕj i = 1, ..., n

Thes are the so called Hartree-Fock equations. These are not real eigenvalue equations since ε couple them.
When using determinant wave function, the energy is invariant under any unitary transformation of

the occupied orbitals forming the determinant One of the possible transformation brings ε into a diagonal
form: (εij = εi δij).

These new orbitals are called the canonical orbitals, which make the Hartree-Fock equation proper
eigenvalue equations:

f̂ϕi = εi ϕi i = 1, ..., n

These equation are called the canonical Hartree-Fock equations, which seems to be independent for the
individual electrons. This is, however, not the case since f̂ is a one-electron operator, but both Ĵj és K̂j

depends on all orbitals :

f̂ = f
({
ϕi

})
For this reason, the equations need to be solved iteratively:{

ϕ
(0)
i

}
→ f̂ (0) →

{
ϕ
(1)
i

}
→ f̂ (1) → ....

which is called the SCF (Self-Consistent Field) procedure.
(At convergence, the Fock operator build up from the orbitals will give the same orbitals as eigenfunctions, i.e.

these are self-consistent.)
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1.5. The Hartree-Fock-Roothaan method

Above we have derived the HF equations which, as solution to them, result in orbitals (one-electron wave
functions):

f̂ϕi = εi ϕi

These are still complicated differential equation without analytical solution. Therefore, further approxi-
mation is needed: look for the orbitals as the linear combination of atomic basis function. This is the so
called (LCAO-MO approximation):

ϕi =
∑
a

Caiχa

with χa standing for the atomic orbitals. Inserting this into the HF equations:

f̂
∑
a

Caiχa = εi
∑
a

Caiχa /〈χb|

∑
a

Cai

〈
χb

∣∣∣∣f̂ ∣∣∣∣χa

〉
︸ ︷︷ ︸ = εi

∑
a

Cai

〈
χb

∣∣∣∣χa

〉
︸ ︷︷ ︸

Fba Sba

F Ci = εi S Ci

and then by gathering all vectors Ci into a matrix:

F C = ε S C

We are at a matrix eigenvalue equation. Furthermore, F depends on the orbitals:

F = f
(
Ĵ , K̂

)
= f ({ϕi}) = f ({Ci})

therefore again an SCF iterative solution is need.
During this SCF procedure, the Fock matrix is constructed using the C coefficients, solve the H-F-R equations

(essentially diagonalize the Fock matrix) and then we use the new C built by the eigenvectors to construct a new
F matrix and we repeat this until convergence.
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